Learning to relax: Evaluating four brief interventions for overcoming the negative emotions accompanying math anxiety

Tad T. Brunyé a,b,⁎, Caroline R. Mahoney a,b, Grace E. Giles a,b, David N. Rapp c, Holly A. Taylor a, Robin B. Kanarek a

a Tufts University, Department of Psychology, Medford, MA, United States
b U.S. Army NSRDEC, Cognitive Science, Natick, MA, United States
c Northwestern University, School of Education and Social Policy & Department of Psychology, Evanston, IL, United States

A R T I C L E I N F O

Article history:
Received 23 August 2012
Received in revised form 26 April 2013
Accepted 20 June 2013

Keywords:
Math anxiety
Mindfulness
L-theanine
Focused breathing
Executive control

A B S T R A C T

We examined the potential effectiveness of four brief interventions, three behavioral and one nutritional, for helping high math-anxious college students regulate negative emotions immediately prior to a time-pressured arithmetic test. Participants with low versus high math anxiety performed a timed arithmetic task after practicing one of three short-term breathing exercises promoting focused attention, unfocused attention, or worry, and after consuming either 0 or 200 mg L-theanine. Overall, participants with high math anxiety underperformed relative to those with low math anxiety. This effect, however, was largely alleviated by a focused breathing exercise, which increased rated calmness and enhanced performance on the arithmetic test amongst those with high math anxiety. L-theanine supplementation showed only minimal effects. These results provide insights into the attentional mechanisms involved in regulating the negative emotions that lead to testing underperformance, and suggest that focused breathing exercises can be a useful, practical tool for helping address the negative impacts of math anxiety.

Published by Elsevier Inc.

1. Introduction

Individual differences in math anxiety cause many intellectually capable students to opt out of higher mathematics education, ultimately decreasing enrollment in mathematics courses and reducing workforce competencies (for a review, see Ashcraft, 2002). Identifying reliable and tractable therapeutic methods for reducing the negative emotions accompanying math anxiety is critical to increasing student participation in higher mathematics education, increasing mathematics competencies, and supporting math-related career decisions in science, technology, engineering, and mathematics (STEM) disciplines (Ashcraft & Krause, 2007). To this end, we examined the effects of four brief interventions, three behavioral mindfulness interventions (focused breathing, unfocused breathing, versus a worry exercise) and one nutritional intervention (L-theanine supplementation), on reducing negative emotions and boosting math testing performance in individuals with low versus high levels of math anxiety.

1.1. Math anxiety

An estimated majority (Perry, 2004) of college students exhibit math anxiety, characterized by feelings of fear and tension in anticipation of situations demanding the application of mathematics knowledge (Ashcraft, 2002). Students with high math anxiety avoid math exposure in both daily life (e.g., calculating a tip at a restaurant) and formal educational coursework (e.g., calculus), ultimately resulting in lower exposure to math, reduced practice using mathematics principles, and reduced workforce math competence. Because time-pressured testing situations characterize many college mathematics courses, math anxiety becomes a primary impediment to students’ academic success.

Individual differences in the ability to effectively control attention during testing (often measured via working memory capacity; Engle, 2002) predict speed and accuracy during arithmetic problem solving (Geary & Widaman, 1992). Behavioral and cognitive neuroscience results suggest that regulating emotions, and specifically regulating feelings of anxiety, demands resources in the very same brain networks critical to effectively controlling attention (for a review, see Ochsner & Gross, 2005). Together, this work predicts that high math-anxious students devote a considerable amount of cognitive and attentional resources towards intrusive thoughts and worries, rather than the processing demands of the arithmetic task, resulting in underperformance (Ashcraft, 2002; Beilock & Carr, 2005). Evidence for this relationship comes from studies demonstrating high math-anxious students begin to underperform only when, 1) tests are given in time-pressured circumstances (Faust, Ashcraft, & Fleck, 1996), and 2) arithmetic problems become more complex and demand increasingly high working memory resources for processes such as carrying, borrowing, and monitoring and updating sequences of operations (Ashcraft & Krause, 2007).
If math anxious college students generally have the knowledge and ability to perform mathematics operations but are limited in their ability to effortfully control attention during anxiety-inducing situations, then treatments targeted at reducing anxiety and training attentional control might prove beneficial in supporting their math test performance. Unfortunately many contemporary treatments for math anxiety tend to be costly, rare, instructor-driven, and can require long-term (e.g., 2–14 weeks) commitments by students (often resulting in attrition). Recent work has identified one successful short-term intervention, asking students to briefly write about their testing worries immediately prior to a math exam. This activity provides temporary relief of the “burden that worry places on working memory,” ultimately boosting math test scores by 5–10% (Ramirez & Belloc, 2011, p. 211). With the goal of building a resource toolkit of short-term interventions which students and instructors alike can easily implement, we investigated mindfulness-based and nutrition-based approaches that might prove valuable in reducing math anxiety and freeing up the mental resources necessary for performance during high pressure tests.

1.2. Focused breathing and attentional control

Attentional control theory (Eysenck, Santos, Derefkeshe, & Calvo, 2007) suggests that when individuals experience anxiety about upcoming events they show impairments in effortfully controlling attention in a goal-directed manner. Under this theory, states of anxiety cause cognitive resources to be diverted away from task-relevant stimuli (e.g., math test performance) towards worry and ruminating. A result of this resource shift is impairment of cognitive processes necessary for maintaining performance on difficult tasks, for instance controlling and shifting attentional resources, and updating and monitoring the contents of working memory (cf., Miyake et al., 2000). Attentional control theory provides a solid foundation for understanding why the math anxious show reduced test performance in spite of having the requisite knowledge to solve a task. Indeed as arithmetic problems become more demanding of carrying and borrowing operations, they recruit executive resources towards updating and monitoring (Hitch, 1978; Logie, Gilhooly, & Wynn, 1994). If these resources are otherwise consumed by anxious worry, cognitive performance suffers. The theory also makes the strong suggestion that some practices, such as mindfulness-based exercises aimed at reducing anxiety, hold potential in freeing up the mental resources necessary for controlling attention during demanding arithmetic tasks.

Mindfulness describes a mental state that allows individuals to maintain full attention to the sensations of present, ongoing experience. Long-term mindfulness training, such as mindfulness-based stress reduction (MBSR), has proven beneficial in promoting regulatory mental functioning such as controlling attention and regulating emotions (Lutz, Brefczynski-Lewis, Johnstone, & Davidson, 2008). Beneficial effects of mindfulness practices have also been found following relatively short-term bouts of focused breathing. For instance, 20 min of focused breathing enhances focused attention on the Stroop task (Wenk-Sormaz, 2005) and performance on a visuospatial task requiring attentional control (Kozhevnikov, Louchakova, Josipovic, & Motes, 2009). Behavioral evidence for the effects of mindfulness training on the control of attention is complemented by emerging findings in cognitive neuroscience (for a review, see Lutz et al., 2008). Brief bouts of mindfulness exercises (such as focused breathing) may hold promise for reducing anxious worry and enhancing test performance immediately following a short-term exercise; if this is the case, this type of exercise might prove advantageous in classroom settings involving high-stakes testing.

1.3. l-theanine and attentional control

The consumption of teas containing the amino acid l-theanine is historically associated with relaxing properties and may hold promise as a mild anxiolytic (Juneja, Chu, Okubo, Nagato, & Yokogoshi, 1999). Gomez-Ramirez et al. (2007) measured electroencephalographic (EEG) response during rest and after 250 mg of l-theanine, and found l-theanine related increased anticipatory alpha band activity over parietal and occipital scalp regions, suggesting reduced arousal states and potentially enhanced effortful control of attention.

To our knowledge very few studies have investigated l-theanine effects on acute stress response in humans, and results are equivocal. Kimura, Ozeki, Juneja, and Ohira (2007) suggest that 200 mg l-theanine supplementation can reduce both psychological and physiological stress responses to a mental arithmetic task (see also, Haskell, Kennedy, Milne, Wesnes, & Scholey, 2008). In contrast, Rogers, Smith, Heatherley, & Pleydell-Pearce, 2008 showed 200 mg of l-theanine reduced blood pressure relative to placebo, but did not reduce anxiety or arousal ratings. Similar results were found by Lu et al. (2004), who found that l-theanine did not reduce anxiety levels relative to placebo under stressful conditions. Thus, current results are mixed with regard to l-theanine’s effects on human affective state and performance under anxiety-provoking circumstances.

1.4. The present study & hypotheses

To examine the effects of mindfulness exercises and l-theanine supplementation, we administered either 0 or 200 mg of l-theanine in capsule form, crossed with one of three breathing exercises (focused, unfocused, worry), in a repeated-measures design. Participants then completed a timed arithmetic task designed to elicit acute stress. We hypothesized that: 1) Students with high versus low math anxiety would show lower math subtest performance on standardized achievement tests, and relatively poor performance on the timed arithmetic task, 2) Students with high versus low math anxiety would show lower working memory capacity, indicating reduced capacity to effortfully control attention during complex timed tasks, 3) Focused breathing (versus unfocused or worry), and l-theanine supplementation (versus placebo), would increase self-reported calmness and decrease nervousness, particularly among those with high math anxiety, 4) The worry condition would induce the lowest overall arithmetic test performance (versus unfocused or focused), particularly among those with high math anxiety, and 5) If focused breathing and/or l-theanine supplementation increase self-reported calmness, these effects would translate to enhanced testing performance in math-anxious students.

2. Method

2.1. Participants

Thirty-six Tufts University undergraduates (18 males, 18 females) participated for monetary compensation. Demographics are detailed in Table 1. All participants were non-tobacco users and were not taking any prescription medications (other than oral contraceptives). Participants were excluded if they: reported being pregnant or nursing, have trouble swallowing pills, or have a history of diabetes, depression, anxiety disorders, panic attacks, cardiac disease, hepatic function impairment, hypertension, peptic ulcer disease, severe reflux or insomnia.

2.2. Design

We used a within-participants design with two independent variables, l-theanine (double-blind; 0 mg, 200 mg), and Breathing (Focused, Unfocused, Worry). These two factors were fully counterbalanced across participants. The two treatment levels were administered in identical capsule form with water; placebo contained microcrystalline cellulose powder.
3.3. Breathing exercises

Three breathing exercises were developed, modeled after Arch and Craske (2006); each exercise was 15 min in duration. In each condition, participants listened to a recording instructing them to establish a straight upright sitting posture, hands resting on their lap, shoulders relaxed, head upright, and feet resting flat on the floor. If comfortable doing so, they were asked to close their eyes; if not, they were asked to direct gaze slightly downward and forward without focusing on anything in particular. The remainder of the exercise differed by condition:

3.3.1. Focused breathing exercise

This exercise was modeled from Kabat-Zinn’s (2005) Guided Mindfulness Meditation practice CDs (disc 3, Sitting Meditation). In this exercise, participants are guided through instructions and practice opportunities centered around attentional focus on the sensations of the breath (inhalation and exhalation). For instance, participants are told to “tune into the feeling of the breath moving in and out of your body, focusing on the sensation of the breath moving past the nostrils; or alternatively, on the feeling of your belly expanding gently on each in-breath, and receding gently with each out-breath.” Participants are repeatedly encouraged to refocus to the breath if the mind wanders away from its sensations.

3.3.2. Unfocused exercise

Participants were repeatedly instructed to “simply think about whatever comes to mind. Let your mind wander freely without trying to focus on anything in particular.” We chose an active rather than passive control exercise in order to unconfound levels of engagement across the three breathing exercises; we further expected that this type of exercise would provide individuals inclined to rumination with the opportunity to think anxiously about the upcoming arithmetic test.

3.3.3. Worry exercise

Participants were asked a series of 15 anxiety-inducing questions (e.g., “is it about cancer that you would feel fearful or bad if it actually did happen to you?”). They were told to silently to themselves, “thinking seriously and deeply about each topic. Consider how each topic would relate not only to you, but to your loved ones, such as family and friends.”

Two versions of the worry task were created, one for each of the two test sessions incorporating this exercise. Topics included personal health (e.g., obesity, depression), environmental issues (e.g., global warming), social issues (e.g., losing friends, discrimination), personal finance (e.g., debt, paying off loans) and international crises (e.g., terrorism, recession).

3.4. Arithmetic task

A mental arithmetic task was adapted from those used by Kimura et al. (2007) and Tang et al. (2007). During the 20-minute task, participants were presented with 300 double-column arithmetic problems that ranged from low (e.g., 10 + 40) to high (e.g., 29 + 47) difficulty, one at a time in the center of the computer monitor. Difficulty was operationalized as whether numbers were divisible by 10, odd versus even, and greater than or less than 19. There were five difficulty levels: the simplest problems used two odd numbers that were not divisible by 10 and were greater than 19 (e.g., 29 + 47). Task difficulty was adaptive; during each session, the task began by

Table 1

<table>
<thead>
<tr>
<th>Demographic</th>
<th>All participants</th>
<th>Low math anxiety</th>
<th>High math anxiety</th>
<th>t-Statistic</th>
<th>Effect size (Cohen’s d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean; SD</td>
<td>Mean; SD</td>
<td>Mean; SD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Mass Index (BMI)</td>
<td>20.8; 2.6</td>
<td>21.3; 2.7</td>
<td>20.3; 2.5</td>
<td>1.09</td>
<td>.38</td>
</tr>
<tr>
<td>Tea Consump. ((oz/day))</td>
<td>5.7; .92</td>
<td>5.9; .71</td>
<td>5.5; 1.1</td>
<td>.11</td>
<td>.04</td>
</tr>
<tr>
<td>MAAS</td>
<td>4.0; .66</td>
<td>4.1; .59</td>
<td>4.1; .59</td>
<td>.71</td>
<td>.30</td>
</tr>
<tr>
<td>FFMQ: Observe</td>
<td>25.9; 4.8</td>
<td>25.4; 4.9</td>
<td>25.6; 4.9</td>
<td>.72</td>
<td>.25</td>
</tr>
<tr>
<td>FFMQ: Describe</td>
<td>29.5; 5.9</td>
<td>28.5; 5.2</td>
<td>28.5; 5.2</td>
<td>1.05</td>
<td>.36</td>
</tr>
<tr>
<td>FFMQ: Act Aware</td>
<td>26.6; 4.9</td>
<td>27.9; 5.3</td>
<td>27.9; 5.3</td>
<td>1.8</td>
<td>.57</td>
</tr>
<tr>
<td>FFMQ: Non Judging</td>
<td>29.3; 6.1</td>
<td>28.6; 6.1</td>
<td>28.6; 6.1</td>
<td>.63</td>
<td>.21</td>
</tr>
<tr>
<td>FFMQ: Non Reactive</td>
<td>21.9; 4.8</td>
<td>20.9; 5.1</td>
<td>20.9; 5.1</td>
<td>1.25</td>
<td>.42</td>
</tr>
<tr>
<td>OSPAN (# words)</td>
<td>28.8; 12.3</td>
<td>24.7; 13.2</td>
<td>24.7; 13.2</td>
<td>2.1*</td>
<td>.69</td>
</tr>
<tr>
<td>SAT Scores: Math</td>
<td>695.8; 86.2</td>
<td>665; 95.1</td>
<td>665; 95.1</td>
<td>2.7*</td>
<td>.76</td>
</tr>
<tr>
<td>SAT Scores: Verbal</td>
<td>677.4; 85.9</td>
<td>684.4; 78</td>
<td>670.3; 95</td>
<td>.49</td>
<td>.16</td>
</tr>
</tbody>
</table>

*Note: df = 34, *p < .05.*
presenting low-difficulty problems (e.g., 10 + 40) and became progressively more difficult with correct responses. If the first trial of a particular difficulty level was correctly answered, the next difficulty level would be presented. If a participant fell below 50% accuracy in a sequence of 3 or more trials, the difficulty level would automatically decrease. Each problem was presented for 1 s, and to increase time pressure the participant was provided with only a 3 second response window. In the event of a correct response, a 300 ms chime sound was played, and an error or non-response was followed by a 300 ms buzzer sound. Each successive trial was preceded by a 1 second inter-trial interval and central fixation cross. Mental arithmetic tasks have been shown to reliably induce acute stress responses as measured by self-report mood instruments, electrophysiology, and stress biomarkers such as salivary α-amylase (Jern, Pilhall, Jern, & Carlsson, 1991; Noto, Sato, Kudo, Kurata, & Hirotu, 2005; Ring, Drayson, Walkey, Dale, & Carroll, 2002). A pilot study (n = 8) showed this particular task increased tension and anxiety subscores on the Profile of Mood States (POMS; Pollock, Cho, Reker, & Volavka, 1979).

4. Procedure

Participants visited the laboratory for a practice session and then six separate test sessions, each separated by at least two days. During the practice session, participants provided demographics, completed the individual differences measures and practiced the test day procedures, including completing the BMIS and practice trials of the arithmetic task.

Each test session took place in the morning following a 12-hour water-only fast (including no consumption of caffeine, herbal supplements, or over the counter medications), at a consistent time within the individual differences measures and practiced the test day procedures, including completing the BMIS and practice trials of the arithmetic task.

5. Results

5.1. Scoring & analysis

The MARS was scored by summing the math test anxiety items; the overall Cronbach’s α in this sample was excellent (α = .92). The MAAS was scored by averaging responses for each of the 15 items; the overall Cronbach’s α in this sample was good (α = .83). The FFMQ was scored by separately summing responses for each of the five factors, reverse-scoring when necessary. For the FFMQ, the five scale-specific Cronbach’s α values ranged from acceptable to excellent (α = .73, .90, .87, .92, .83, respectively).

The OSPAN was scored by summing the number of words correctly recalled across trials; a recalled set of words was correct only if a participant recalled all words in the correct order. BMIS reliability indexed using Cronbach’s α in this sample was overall good (α = .88).

For standardized achievement test scores, the majority of participants provided scores from the Scholastic Aptitude Test (SAT), though some from only the American College Testing (ACT) exam; in the latter case, ACT scores were converted to SAT scores using procedures established by the University of California (http://www.ucsd.edu/catalog/front/ACTtoSAT.html).

In the following sections, statistical results are accompanied by Cohen’s d (t-tests) or eta-squared (η^2).

5.2. Math anxiety groups

Participants varied widely in math anxiety levels ($M = 45.3$, $SD = 12.7$; range of 15–67). A frequency histogram indicated a bimodal distribution of math anxiety scores, peaking in the 30–40 range (low) and 50–60 range (high). A median split at 46.5 produced two groups, one relatively low ($M = 34.6$, $SD = 7.5$) and one high in math anxiety ($M = 55.9$, $SD = 6.1$). Table 1 details the composition of these two groups, including comparative statistics.

Supporting Hypothesis #1, the high (versus low) math-anxious group showed lower math (but not verbal) subtest performance on standardized achievement tests. Supporting Hypothesis #2, the high (versus low) math-anxious group showed lower working memory capacity.

6. Focused breathing and L-theanine: effects on math anxiety

6.1. Mood (BMIS) results

Recall that BMIS ratings were sampled at four points within each of the six sessions: upon arrival to the session (Baseline), immediately following capsule consumption, immediately following the breathing exercise, and again immediately following the arithmetic test. For the BMIS, our scoring procedures followed Mayer and Gaschke (1988); we focused our analyses on two items that were highly relevant to our hypotheses: Nervous and Calm, and created a composite measure (Calm–Nervous) to index degree of calmness while accounting for rated nervousness. To standardize scores within an individual, we calculated a difference score that reflected each of these three Time points after subtracting Baseline ratings (see Table 2). An omnibus 3[Breathing: focused, unfocused, worry] x 2(L-theanine: 0 mg, 200 mg) x 2(Math Anxiety: low, high) x 3(Time: post-capsule, post-breathing, post-math-task) mixed analysis of variance (ANOVA) demonstrated a main effect of Time, $F(2, 68) = 13.76, p < .01$, $\eta^2 = .03$.

The effect of Time was qualified by two interactions, one between Time and Math Anxiety, $F(2, 68) = 4.0, p < .05$, $\eta^2 = .01$, and the other between Time and Breathing, $F(4, 136) = 2.88, p < .05$, $\eta^2 = .01$. In examining the first interaction, the two math anxiety groups only showed a calmer difference at Post-Math, with the Low Math Anxiety group showing significantly higher calmer ratings relative to the High Math Anxiety group, t(34) = 1.97, p < .05, Cohen’s d = .65 (all other rs < 1). In examining the second interaction, three simple effects ANOVAs showed no effect of Breathing at post-capsule, $F(2, 70) = .16, p > .05$, $\eta^2 < .01$. Following the 15-minute exercise, however, there was an effect of Breathing, $F(2, 70) = 3.96, p < .05$, $\eta^2 = .10$, with highest rated calmness in the Focused condition, followed by the Unfocused, and then the Worry condition (see Table 2), supporting Hypothesis #3. Finally, at post-math task, though the pattern was similar to at post-breathing, the effect of Breathing was mitigated, $F(2, 70) = .61, p > .05$, $\eta^2 < .01$. L-theanine supplementation also appeared to increase composite calmness, but this pattern only approached marginal significance, $F(1, 34) = 2.2, p = .14, \eta^2 = .01$.

6.2. Arithmetic task results: accuracy

Recall that there were five task difficulty levels; across the two Math Anxiety groups, there was no significant difference in the proportion of trails in each of the five difficulty groups ($M_{level1, lowanx} = .008$, $M_{level1, highanx} = .011$; $M_{level2, lowanx} = .025$, $M_{level2, highanx} = .031$; $M_{level3, lowanx} = .009$, $M_{level3, highanx} = .011$; $M_{level4, lowanx} = .007$, $M_{level4, highanx} = .009$; $M_{level5, lowanx} = .351$, $M_{level5, highanx} = .936$), as confirmed by no interaction ($p = .84$) or main effect of Math Anxiety ($p = .77$) in a 2(Math Anxiety: low, high) x 5(Difficulty Level: 1.2.3.4.5) ANOVA. When considering accuracy, however, at the lower difficulty levels (1–2) the two Math Anxiety groups showed similarly high accuracy ($M_{level1, lowanx} = .91$, $M_{level1, highanx} = .92$;
burden that anxiety places on cognitive performance. In doing so, we would enhance the ability of the math anxious to perform arithmetic tasks under pressure. Our results support this hypothesis. When performing a laboratory arithmetic test designed to simulate a time-pressured testing situation, we found that participants with high math anxiety underperformed by approximately 14% relative to their low math anxiety peers. Of course, there is no reason to believe that the high-anxious group did not have the ability to solve these somewhat basic addition problems; indeed all participants showed SAT math subject test scores of at least 500 points. Performance differences were only observed when problems became more mentally demanding, such as requiring the carrying and more active monitoring and updating of sequences of operations. The most compelling result was found when math-anxious participants performed a focused breathing exercise immediately prior to the arithmetic test. After the exercise they showed a 9% boost in accuracy relative to the worry exercise (and a 6% boost relative to the unfocused breathing condition), allowing them to approach the performance levels of participants with low math anxiety. The focused breathing exercise was specifically designed to reduce feelings of anxiety and aid in the effortful control of attention, allowing participants to focus on something other than the negative emotional thoughts about the math test. Even with these advantages of focused breathing, we note that this particular exercise was not able to boost performance to the extent that the low and high math anxious individuals showed equivalent performance; indeed the high math anxious still underperformed their low anxious peers by approximately 8% following focused breathing. Longer-term mindfulness practices might prove effective in narrowing this gap, though this remains an empirical question.

7.1. Theoretical implications

Why might focused breathing be advantageous for math testing performance amongst the math-anxious? Humans have limited capacity...
for the processing and manipulation of information in working memory (cf., Miyake & Shah, 1999). Behavioral and cognitive neuroscience research suggests that actively regulating emotions recruits structural and functional brain mechanisms that are also responsible for actively controlling and deploying attentional resources (Ochsner & Gross, 2005). Brief focused breathing exercises improve the control of attention (Tang et al., 2007) and aid in regulating negative emotions during stressful situations (Arch & Craske, 2006). Individuals with high math anxiety are likely to devote considerable cognitive resources to regulating their feelings of worry, and processing constraints emerge during more demanding arithmetic operations (Beilock & Carr, 2005). A brief bout of focused breathing, however, was able to train the effective control of attention away from the distressing feelings and ultimately free up cognitive resources to focus attention on the mathematical operations. Our results support more recent theories positing important interactions between emotion and cognition; for instance, attentional control theory (Eysenck et al., 2007). Under this theory, anxious states consume mental resources that might otherwise be devoted to the effortful control of attention, particularly when participants engage in tasks that demand central executive involvement (such as difficult arithmetic operations; Hitch, 1978; Logie et al., 1994). Indeed attentional control theory has been a valuable framework for understanding how anxiety can produce poor test performance among children (Owens, Stevenson, Norgate, & Hadwin, 2008). Herein we find that similar relationships might prove at least partially responsible for test performance among college students.

In contrast to the effects found with the focused breathing exercise, l-theanine supplementation did not produce consistent effects on mood state or test performance. Though 200 mg of l-theanine did lead to some calming relative to placebo (in support of prior work; Kimura et al., 2007), we note that this effect did not reach marginal significance. In turn, l-theanine did not significantly affect math testing performance. We add to the mixed results calling into question the putative effects of l-theanine on human affect and cognitive performance. One possible explanation for differential effects is varied tea consumption rates across participant samples. In the present sample, the majority of participants (26/36) reported some level of tea consumption; it is possible that l-theanine’s anxiogenic effects are diminished in individuals who commonly consume products containing l-theanine (Rogers et al., 2008). Though plausible, exploratory regressions using individual differences in tea consumption revealed no value in predicting affect or testing data. Further, it is difficult to compare our sample characteristics to the extant literature given that most studies finding l-theanine effects on affective state fail to report participant consumption rates (Haskell et al., 2008; Kimura et al., 2007).

7.2. Applied implications and limitations

Several studies have demonstrated that adopting long-term mindfulness-based interventions in classroom settings holds promise for increasing student engagement, positive affect, compliance, and test performance (for a review see; Burke, 2010). These programs, however, are often time intensive for both students and teachers (e.g., 2–14 weeks), costly, and show attrition (Laselle & Russell, 1993). We began this research by suggesting the potential for several short-term interventions to decrease negative emotions and enhance attentional control, with the goal of building a resource toolkit of short-term interventions which students and instructors alike can easily implement. As reviewed in the Introduction, math anxiety is a primary impediment to student success in both STEM coursework and careers. The present results suggest that a short bout of focused breathing exercise can boost performance of students with high math anxiety when they attempt a high pressure arithmetic task. Short-term focused breathing exercises may therefore present a practical and tractable solution for supporting test performance amongst the math anxious.

Though the present results show promise for enhancing test performance, it also carries limitations that should motivate further research. First, our participants were sampled from a highly selective private university with a potentially limited range of knowledge and ability. Though it is compelling that we found enhanced performance among the math anxious, more work is needed before understanding whether our results generalize to more varied student populations in terms of age (e.g., middle and high school), knowledge and ability. Second, our manipulations did not include a condition that promoted worry specifically about the upcoming test. We chose to include the unfocused condition to allow test-related thoughts to enter participants’ minds; of course, we cannot guarantee that participants thought about the upcoming test in this condition. Future research might compare our unfocused condition to a condition that specifically encourages the type of rumination math anxious individuals might experience immediately prior to an exam. Third, people vary widely in their propensity towards and acceptance of mindfulness-based practices (Brown & Ryan, 2003). Though our sample tended to show moderate to high levels of trait mindfulness (as measured via the MAAS), sampling from more varied populations may demonstrate limited acceptance of a focused breathing exercise among both students and teachers. Finally, we note that the OSPAN working memory task uses simple arithmetic problems (e.g., 1 + 8 = 5; True or False?) to induce interference during word memorization; it is possible that high math anxious individuals underperformed on the OSPAN simply due to anxiety regarding this particular OSPAN attribute. Though this is certainly possible (see Ashcraft & Kirk, 2001), we find this unlikely given no evidence of group differences in our timed arithmetic task at difficulty levels resembling the OSPAN arithmetic problems.

7.3. Conclusions

In the 2008 report issued by the United States National Mathematics Advisory Panel, the Panel recommended the “development of promising interventions for reducing” math anxiety (U.S. Department of Education, 2008). Recent work has begun identifying the utility of short-term interventions for effectively managing negative emotions and supporting students’ experiences with formal mathematics tasks and assessments. Our research takes an important step towards this goal by validating a tractable real-world strategy for enhancing test performance amongst those with high math anxiety. A brief focused breathing exercise appears to help students regulate negative emotions and marshal the cognitive resources necessary to control anticipatory anxiety immediately prior to a math testing situation.

References

