Annual Report

Arts & Sciences and Engineering Faculty IT Committee 2012 – 2013

The committee’s mission is to provide advice on the delivery of information technology services provided to AS&E, to make recommendations concerning improvements in such services or their underlying policies as necessary to support the University’s teaching and research missions. With this objective in mind, the committee held four meetings during the 2012 – 2013 academic year. One of these meetings was a joint meeting with the Library Committee.

October 2nd meeting:
The committee addressed the update of the integration of UIT/IT/AT services and discussed the DeLoitte consultant’s report submitted in July 2012. The members also reviewed the plans for integration going forward, including needs for continued IT support for faculty and departments, scholarship challenges, the impact of integrating help functions, the need for a physical space as a service access point, ensuring continuity via an enterprise approach at the University level including “architect-level” contributors from the UIT/IT. Additional discussion centered around desktop virtualization, ensuring time-sensitive responses from a centralized system, and organization around geographic zones vs. demand locus.

The update on the conversion from SIS to iSIS was raised as a potential topic for future discussion, along with “re-thinking” computer labs in different structure, access, capability, and function, and the impact of the profusion of wireless devices.

November 14th meeting:
In an effort to help address concerns around functionality in the new system(s), the committee developed several questions around the process and goals of the implementation of the new iSIS and related systems:

- How will end-user beta-testers be identified for pre-release and post-release testing of the new systems?
- How will feedback from end-users be collected and used to inform roll-out, changes, and prioritization of system characteristics including before, during, and after initial roll-out?
- How will the University ensure an adequate variety among beta-testers, including role (staff/faculty/undergraduate/graduate), level of computing sophistication, level of system complexity, and level of familiarity with iSIS and related systems?
- How will the scope of the full complement of necessary functionality be identified, and will this include surveys or focus groups of current and future users at different levels?
- Will the system be easily adaptable/expandable if specific functions are deemed to be important/critical/necessary based on feedback from user groups (i.e. if a function is missing but needed for a group of end-users, how difficult will it be to add to or adapt the system after receiving feedback about the need)?
- Will the system be compatible with DARS or R25’s next iteration, or will these be stand-alone functions alongside the iSIS system?
• In general, in addition to the above questions, the committee requests specific information on the plan for evaluating the system, testing the system, receiving feedback, and using that feedback (before, during, and after roll-out) to inform the ongoing evaluation of the system’s efficacy and functionality.

The committee also re-visited the question of how to address the limited access to using high-capacity computing in the classroom as an instructional modality. Our example was students comparing genomes in a genetic analysis course, a task which requires the comparison of billions of base pairs. Only eighteen workstations are in the classroom with more than thirty students in the class. A number of issues and possible solutions were raised:

• One possible solution: increase the number of workstations for this particular lab. This will meet the need of this class, but may not be an equitable or University-wide solution to a larger need.

• Cluster computing could be a solution. The existing infrastructure at the University could provide the necessary RAM, software, servers, processing power, and storage to meet the needs of the simulations and lab work required for instruction in a variety of classes, with workstations or student’s own devices connecting to the infrastructure to access the necessary operations/functions.

• Increase the number of stand-alone machines in various sites around campus, which again would each need to be upgradable, scalable, and supported to meet the varied needs of the different departments

• Change the architecture of the rooms to allow for more users without dramatically changing the number of machines

• Use simpler analogs to represent the same general principles as the experiments/activities which require large-scale computing solutions, but which can be run across numerous platforms and at a lower resource cost. This provides a different quality or accuracy in training and education for our students, but would reduce the resource and access demand.

• Are there solutions related to desktop virtualization which would allow larger computer or workstations labs to be ad hoc configured with each entering class to access the storage, software, licenses, and processing power necessary for a variety of classes? Something like this (likely addressed through a capital campaign?) would allow the same space to be utilized by art history in the morning, chemistry before lunch, and genetics in the afternoon, if such a solution is possible.

• Regardless of the solution for access to storage, operating systems, processing power, workstations, and the necessary licensed software, this would always need to be in a context of use of the technology as an instructional modality. This means the committee is looking for a solution which would always include a teacher in the classroom performing instruction and collaboration with the students while the technology is used. This is different than solutions geared to giving students access to resources or technology on their own time or in a lab outside of class time.
January 30th meeting:

Discussed the iSIS rollout and beta-testing update through a presentation by the rollout team, coordinated by Christine Michael and Martha Pokras. iSIS timeline and presentation powerpoint attached to this report. The committee had opportunities to discuss challenges and questions with the roll-out team and will continue to contribute to dialogue about this important process.

A member of the committee raised the possibility of a development of a “maker space” as part of the expected re-purposing of a portion of Tisch Library. This was scheduled for discussion with a joint meeting with the Library Committee.

February 13th meeting:

Discussed digital asset management and digital infrastructure and the impact on scholarship and teaching at the University. Progress with changes in these systems at Tisch and Tufts were discussed and future plans described. Please refer to Library Committee The possibility of an interdisciplinary “maker space” was discussed and proposed. This possibility was scheduled for further discussion at the April 17th meeting of the Library Committee, to be attended by Faculty IT member Paul Lehrman and Faculty IT Chair Michael Roberts

April 17th Library meeting:

Discussed options for “maker space” in relation to current plans for library spaces. At this point, funding does not exist for feasibility studies or specific plans siting a maker space at the Tisch library. Other sites will be considered and seeking funding for feasibility studies may be an option in the near future.

May 2nd Faculty IT meeting:

Discussed plans for the next academic year for the work of the IT committee, including updates on UIT/IT/AT consolidation, iSIS roll-out, classroom technology/support, and re-evaluation of student computer lab spaces.

Michael Roberts, Academic Fieldwork Coordinator in the Occupational Therapy Dept., will continue to serve as chair of the committee, given no identified volunteer for the position for AY 2013-2014.

Respectfully submitted,

Michael Roberts, MS, OTR/L
Academic Fieldwork Coordinator, Lecturer
Occupational Therapy Dept.

May 13, 2013