Proceedings of the 12th ICMI Study Conference
The Future of the Teaching and Learning of Algebra

The University of Melbourne, Australia
December 9-14, 2001

Edited by
Helen Chick, Kaye Stacey, Jill Vincent & John Vincent

Volume 1
Additive Relations and Function Tables

Bárbara M. Brizuela
TERC/Harvard University
<brizuela@gse.harvard.edu>

Susanna Lara-Roth
Tufts University
<slararot@worldnet.att.net>

We present work with a second grade classroom where we carried out a teaching experiment that attempted to bring out the algebraic character of arithmetic. In this paper, we specifically illustrate our work with the second graders on additive relations, through the children's work with function tables. We explore the different ways in which the children represented the information of a problem in the form of a self-designed function table. We argue that the choices children make about the kind of information to represent or not, as well as the way in which they constructed their tables, highlight some of the issues that children may find relevant in their construction of function tables. This open-ended format pointed to how they were understanding and appropriating tables into their thinking about additive relations.

Although tables are an integral part of the mathematics curriculum, we know surprisingly little about how this tool lends itself to the understanding of functions, particularly of additive functions. The same cannot be said of other tools related to functions, such as graphs, where there has been considerable research describing children's understanding and construction of them (e.g., diSessa, Hammer, Sherin, & Kolpakowski, 1991; Leinhardt, Zaslavsky, & Stein, 1990; Nemirovsky, Tierney, & Wright, 1998; Tierney & Nemirovsky, 1995), or other types of diagrams (e.g., Sella, Behr, & Voelker, 1991; Simon & Stimpson, 1988). What is the nature of children's understanding of tables? How does their understanding evolve? What do children learn about functions when working with tables? And what issues might educators and curriculum developers need to take into account when designing learning activities that employ tables?

Our work stands in contrast with research carried out up to this moment. Sella and his colleagues view the use of linking tables or diagrams as "overriding the influence of the intuitive models and the numerical constraints associated with them, overriding the inaccurate conceptions many students have of the two operations, reflecting multiplicative relationships between the quantities, remaining true to the semantic meaning of the problem, and being effective regardless of the numerical characteristics" (Sella, Behr, & Voelker, 1991, p. 31). Simon suggests that concrete diagrams are helpful for children to refer to when "confusions arise with the abstractions" of the algebraic problems they are confronted with (Simon & Stimpson, 1988, p. 140). Streefland has found that "the ratio table is a permanent recording of proportion as an equivalence relation, and in this way contributes to acquiring the correct

1 Support for this research was provided by NSF Grant #9900591, awarded to D. Carraher and A. Schliemann. Special thanks to Fred O Meare, Thelma Davis, and the second grade students involved in our project for their help, and to David Carraher (TERC) for constructive comments on earlier versions of this paper.
concept" and "serves the progression in schematising" (1985, p. 91). These researchers have focused on the use of tables to enhance or guide students' understanding of functions. Our focus has been that of uncovering the understandings already present by analyzing the original self-designed tables constructed by young children. This psychogenetic approach to children's representations is similar to that carried out in the area of literacy by Ferreiro (e. g., Ferreiro, 1988; Ferreiro & Teberosky, 1979) and in the area of musical notations by Bamberger (e. g., 1988).

In our classroom research, we have noticed that children tend to construct tables that differ significantly from the conventional tables they are shown by us, their teachers. This has suggested to us that children's re-construction of tables can inform us about how they are working tabular representations into their thinking—their thinking in general and about functions in particular. A case in point is that of a child named Joey. When asked to construct a table to display the data available we had been working with in a word problem, he began to peek at the printed table on the last page of his handout. As he re-constructed the table, he intermittently flipped to the end page to verify his work and move to the next step. Figure 1 shows the table he had used as a model.

<table>
<thead>
<tr>
<th></th>
<th>Jessica</th>
<th>Daniel</th>
<th>Leslie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 1</td>
<td>7</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Day 2</td>
<td>9</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Day 3</td>
<td>12</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Day 4</td>
<td>14</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Day 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 16</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Any day</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. The table that Joey had been peeking at

Figure 2 shows Joey's representation of the table. At first glance, he simply transposed the table, organizing the columns by days (even though it was organized by children's names in the original table) and the rows by children. However, he did not place the children's names only once at the beginning of each row. Instead, Joey seemed to find it necessary to write the child's initials in each one of its respective cells. In other words, in Joey's re-construction, Jessica's initial recurs in each cell of row 1; Daniel's initial recurs in each cell of row 2; and Leslie's initial recurs in each cell of row 3.
Figure 2. Joey’s table, constructed while peeking at the table in Figure 1

In the present paper, we explore children’s self-designed function tables with the goal of: a) learning about what they consider relevant in the construction of a function table; b) learning more about children’s understanding of additive functions, as reflected in their self-designed tables.

The study and its context

The work reported in this paper is part of the work we have been doing during the last three years with children between 8 and 10 years of age. In our work, we have been exploring some ideas about how to bring out the algebraic character of arithmetic (see Brizuela, Schliemann, & Carraher, 2000; Carraher, Brizuela, & Schliemann, 2000; Carraher, Schliemann, & Brizuela, 1999, 2000; Schliemann, Carraher, & Brizuela, 1999). Most efforts to “algebrafy” arithmetic (Kaput, 1995) have begun with multiplicative reasoning and linear functions. We believe that there is no need to put off the algebraification of arithmetic until multiplicative structures. Moreover, children’s initial intuitions about order, change, and equality do arise in additive situations. During this time, central to our work has been trying to understand how young children work algebraic representations into their thinking. In this paper, we extend these views into an exploration of how children understand, construct, and think about tables in additive situations.

The specific examples that we use in this paper are taken from our work with the children in four second-grade classrooms in a public elementary school from a multi-cultural community in greater Boston. Joey, mentioned above, is one of these second graders. These examples are part of our longitudinal work with students as they move from their second through fourth years of schooling. During the second grade, we met with the students once a week during a six-week period. Our curriculum that semester was focused on an exploration of additive structures. Midway through the semester, we interviewed the children in pairs. The purpose of the interviews was two-fold: to learn about the students’ understandings of the concepts, and to hold more individualized interactions with the students, as learning opportunities. We interviewed a total of 39 children. During that interview, we presented the students with the following problem which is the same that Joey, above, had been presented with. A model table was included at the end of the children’s handouts for a different task during the interview, but was not shown to the children during the part of the interview that we will be focusing on here.
Day 1:

Jessica, Daniel, and Leslie each has a piggy bank where they keep the money they receive from their grandmother. One day, they counted the money they had and found that Jessica had 7 dollars, Daniel had 4 dollars, and Leslie had none. They then decided not to spend any more money and keep all the money their Grandma would give them in their piggy banks.

Show how much money each one has.

Day 2

On the second day Grandma came to visit and gave 2 dollars to each one of the children. They put the money in their piggy banks.

Show what happened.

Day 3

On the third day Grandma came to visit and gave 3 dollars to each one of the children.

Show what happened.

How much money does each one have now?

Show in a table what happened from day 1 to day 3.

Looking at children’s self-designed tables

After going through the problem, we asked each child to show in a table what had happened in the problem, from day 1 through day 3. We did not give the children a model to follow in building their tables, although they had already worked with tables in their classes with us.
The range of representations

The children's responses spanned the range from the very idiosyncratic, like Jennifer's (see Figure 3) to the more conventional, like Joseph's (see Figure 4). Interestingly, Jennifer and Joseph had actually worked together on this problem even though their responses were radically different.

![Figure 3. Jennifer's table](image)

![Figure 4. Joseph's table](image)

Jennifer explained that she drew a table (literally!), with its four legs. She described the table she made in the following way:

Jennifer: See, I wrote days up here (pointing to the word "days"), and then wrote, there was three days, right (pointing to the numbers)? And that is including money (pointing to the dollar bill). And then I drew squares and it says...on day two they got two dollars and on day three they got three dollars.

Joseph, on the other hand, explained that he did a "regular table...it's just got days and names" (maybe feeling slightly intimidated by Jennifer's creation!).

Following a temporal order

Of the thirty-nine children interviewed, over half of them (22 of the 39) followed a temporal order in their construction of the tables. By this we mean that they placed the names of the characters as headers for the columns and the days of the week as headers for the rows. Thus, going down a column also reflects the passing of time. This is usually the conventional way to construct tables. Joseph's table is an example of this kind of construction (see Figure 4, above). In contrast, an example of a table that does not follow this order is that of Joey, in Figure 2, above.

Relevant and irrelevant information

An analysis of the children's tables also indicates what kind of information they considered to be relevant and irrelevant. In their tables, children were more likely to consider the names of the characters in the problem (e.g. Daniel, Jessica, and Leslie) as relevant information, that could not be obliterated. Thus, only 3 of the 39 children (8%) left out the characters' names in their tables. An example of a table that left out this information is that of Jessica (see Figure 5, below).
Figure 5. Jessie’s table, which does not show the characters’ names

In Jessie’s table, it is hard to discern who each of the amounts refer to. The fact that there are so few children who obliterated this information may indicate that it is very important for quantities to have some kind of referent or, in this case, “owner” (see Schwartz, 1988, 1996). Along the same lines, 14 of the 39 children (36%) repeat the names of the characters in their tables. Raymond’s table, for example, seems to indicate that he felt compelled to include the names of the characters of the problem—the “owners” of each amount—in each one of the cells in his table (see Figure 6, below).

Figure 6. Raymond’s table, which repeats the names of the characters in each cell

In contrast, the second graders we worked with did not consider the day numbers as relevant as the names of the characters. Thirteen of the 39 children (33%) did not write the names of the days in their tables (compared to the 3 children who did not write the names of the characters). Briana is an example of a child who did not explicitly register the day numbers in her table (see Figure 7, below). This may indicate that in her view, the inclusion of this information would have been redundant in her table.

Figure 7. Briana’s table, which does not show the day numbers for the problem

It seems that the day numbers are information that is considered more superfluous than the names of the characters. Going along the cells (be it down the columns, as would be done conventionally, or across the rows, as was done by some children like Jessie and Raymond) shows the passing of time. Some children may think that therefore it would be redundant to indicate the day numbers. Additionally, very few children (2 of the 39 children, or 5%) actually
repeat the day numbers in their tables (compared to the 13 children who repeated the characters’ names in their tables). Adam, for example, repeated the information about the day numbers in his table (see Figure 8, below).

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 $</td>
<td>4 $</td>
<td>0 $</td>
</tr>
<tr>
<td>9 $</td>
<td>6 $</td>
<td>2 $</td>
</tr>
<tr>
<td>12 $</td>
<td>9 $</td>
<td>5 $</td>
</tr>
</tbody>
</table>

Figure 8. Adam’s table, where he repeats the day numbers in each cell

Moreover, when providing a verbal explanation of his representation during the interview, Adam felt compelled to repeat not only the day numbers but also each character’s name, each day:

Adam: Day one, Jessica had seven dollars. Day one, Daniel had, uh, four dollars, and day one Leslie had zero dollars. Day two, Jessica had nine dollars. Day two, Daniel had six dollars. Day two, Leslie had two dollars. Day three, Jessica had twelve dollars. Day three, uh, Daniel had three dollars. Day three, Leslie had five dollars.

The choices children make about the kind of information to repeat and to obliterate from their tables highlight some of the issues that these children may find relevant in their construction and re-construction of function tables. The referents for the amounts are important to them, while an indication of the temporal order of the events is not as important. In children’s minds, they may find that there are other ways in which tables can indicate temporal order, but not the referents to the amounts included in the table.

Looking into additive relations

Of the thirty-nine children interviewed, most children (36 of the 39, or 92%) showed in their tables the cumulative amount of money that each child had on each one of the three days—that is, how much money each child *had* and not how much they *got*. Tables such as Joseph’s (Figure 4), Briana’s (Figure 7), and Adam’s (Figure 8) are examples of tables in which only the cumulative amounts are depicted in the tables. On the other hand, the other three children showed in their tables the amount of money gained each day instead of the total amount of money—that is, how much they *got* and not how much they *had*. Jennifer’s table (Figure 3) is an example of this kind of representation. Another example of this kind of representation is that of Mariah, who shows the amounts gained by drawing a circle around them. The circled parts at the bottom of the representation are the amounts the children *got* from their grandmother on the second and third days (see Figure 9, below).
Thus, in thinking about additive relations they were representing in their tables, most of the children focused on total amounts; that is, on how much each child had on each one of the three days. A variation of this focus can be seen in representations such as Briana’s (Figure 7, above) and Jessie’s (Figure 5, above). In their tables, they crossed out the amount of money the children had on the previous day once they noted how much they had on the following day. Thus, when they moved on to day two, they crossed out the amount on day one. In their representations, they seem to need to clarify that the amounts represented in each row should not be added to the amounts in the previous rows, but that each new row makes the previous ones invalid. A few children, however, focused on the differences between the amounts that the children had on each one of the days, or how much the children got on each one of the days. This is the case of Jennifer and Mariah described above.

Concluding remarks

We take seriously and at heart a question posed now ten years ago by Kaput (1991): How do material notations and mental constructions interact to produce new constructions? (p. 55). While we do not believe that we could answer this question conclusively based on the data here presented, we can indicate that there is a great need to look further and deeper into children’s construction of function tables. By developing better understandings both of how their representation of tables evolves and of the understandings about additive relations that is reflected in their representations, we can better serve them as teachers and as curriculum developers. We have begun to unearth some of children’s understandings about additive relations reflected in their representations. Still to be further explored is the interaction both of their constructions and of conventional tables on the development of their understandings about additive relations.

Even though their experiences with function tables are counted, the second grade children we worked with have developed sophisticated tabular representations of the data presented in a problem focusing on the progression of money gained over time. They construct function tables that make sense and that reveal the workings of their logic about the problem at hand, and they adequately organize and represent the problem situation. Interestingly, children incorporate into their representations conventional features of function tables. Over half of the children we interviewed followed a temporal order in their tables, in terms of rows (for characters) and columns (for the passing of time). Additionally, information such as showing the characters’ names seems to be relevant to children when constructing these tables, which is consistent with Schwartz’s (1988, 1996) suggestion regarding the importance of having referents for quantities. Additionally, data tables seem to help uncover children’s conceptions and understandings about additive relations.
References

Schwarz, J. (1995). Intensive quantities and referent transforming arithmetic operations. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (vol. 2, pp. 41-52). LEA & NCTM.

Reston, VA: NCTM.

