Concentrations of acetyl–coenzyme A and nicotinamide adenine dinucleotide (NAD\(^+\)) affect histone acetylation and thereby couple cellular metabolic status and transcriptional regulation. We report that the ketone body \(\beta\)-hydroxybutyrate (\(\beta\)-OHB) is an endogenous and specific inhibitor of class I histone deacetylases (HDACs). Administration of exogenous \(\beta\)-OHB, or fasting or calorie restriction, two conditions associated with increased \(\beta\)-OHB abundance, all increased global histone acetylation in mouse tissues. Inhibition of HDAC by \(\beta\)-OHB was correlated with global changes in transcription, including that of the genes encoding oxidative stress resistance factors FOXO3A and MT2. Treatment of cells with \(\beta\)-OHB increased histone acetylation at the \(\text{Foxa3a}\) and \(\text{Mt2}\) promoters, and both genes were activated by selective depletion of HDAC1 and HDAC2. Consistent with increased FOXO3A and MT2 activity, treatment of mice with \(\beta\)-OHB conferred substantial protection against oxidative stress.

C

Cellular metabolites such as acetyl–coenzyme A (acyt-CoA) and nicotinamide adenine dinucleotide (NAD\(^+\)) influence gene expression by serving as cofactors for epigenetic modifiers that mediate posttranslational modification of histones (\(\text{J}\)). The activity of histone acetyltransferases (HATs) is dependent on nuclear acetyl-CoA concentrations (\(\text{2}, \text{3}\)) and the deacetylation activity of class III HDACs, also called sirtuins, is dependent on NAD\(^+\) concentrations (\(\text{4}\)). Class I (HDAC1, 2, 3, 8), class II (HDAC4, 5, 6, 7, 9, 10), and class IV (HDAC11) HDACs are zinc-dependent enzymes, but endogenous regulators are not known.

Small-molecule inhibitors of class I and class II HDACs include butyrate, a product of bacterial anaerobic fermentation (\(\text{5}\)). Butyrate is closely related to \(\beta\)-hydroxybutyrate (\(\beta\)-OHB) (Fig. 1A), the major source of energy for mammals during prolonged exercise or starvation (\(\text{6}\)). Accumulation of \(\beta\)-OHB in blood increases to 1 to 2 mM during fasting when the liver switches to fatty acid oxidation (\(\text{7}, \text{8}\)), and to even higher concentrations during prolonged fasting (6 to 8 mM) (\(\text{6}\)) or in diabetic ketoacidosis (>25 mM) (\(\text{9}\)).

To determine whether \(\beta\)-OHB might have HDAC inhibitor activity, we treated human embryonic kidney 293 (HEK293) cells with different amounts of \(\beta\)-OHB for 8 hours, and measured histone acetylation levels by Western blot with antibodies to acetylated histone H3 lysines 9 (\(\text{AcH3K9}\)) and to acetylated histone H3 lysine 14 (\(\text{AcH3K14}\)). Inhibition of HDAC by \(\beta\)-OHB was unrelated to HDAC activity, as treatment with \(\beta\)-OHB did not increase acetylation of \(\alpha\)-tubulin, indicating that it inhibits class I HDACs but not the class IIb (HEK293) deacetylase, HDAC6.

To test the HDAC inhibitor activity of \(\beta\)-OHB and its possible selectivity, we purified recombinant human HDACs after transient transfection of expression vectors for human epitope-tagged (FLAG) HDAC1, HDAC3, HDAC4, and HDAC6 in HEK293T cells. We purified the HDACs, incubated them with \(^{\text{1}}\text{H}\)-labeled acetylated histone H4 peptides, and measured their deacetylase activity (Fig. 1D) (\(\text{11}\)). \(\beta\)-OHB inhibited HDAC1, HDAC3, and HDAC4 in a dose-dependent manner, even at 1 to 2 mM, which can occur in humans after a 2- to 3-day fast or strenuous exercise (\(\text{6}, \text{8}, \text{10}\)). Like butyrate, \(\beta\)-OHB did not increase acetylation of \(\alpha\)-tubulin, indicating that it inhibits class I HDACs but not the class IIb tubulin deacetylase, HDAC6.

www.sciencemag.org/cgi/content/full/339/6116/208/DC1

Material and Methods

Fig. S1 to S9
Tables S1 to S9
References (\(\text{21}–\text{51}\))

20 July 2012; accepted 16 November 2012
10.1126/science.1227710

www.sciencemag.org
acetoacetate, and acetyl-CoA to histone acetylation in response to βOHb treatment, we depleted cells of βOHb dehydrogenases (BDH1, 2) with small interfering RNA. Both enzymes catalyze the transformation of βOHb into acetooacetate, and their suppression had no effect on histone acetylation in response to βOHb up to 3mM. At higher concentrations of βOHb (10 and 30 mM), however, further increase in histone acetylation was suppressed by depletions of βOHb dehydrogenases (fig. S7, A and B), indicating that either AcAc or acetyl-CoA might also contribute to histone acetylation in cells exposed to concentrations of βOHb above the IC₅₀ for HDACs.

To determine whether changes in βOHb concentrations in vivo might affect histone acetylation, we measured βOHb concentration in mouse serum after a 24-hour fast or in mice on calorie restriction (CR). We also used implanted osmotic pumps to administer exogenous βOHb or phosphate-buffered saline (PBS). βOHb concentrations increased to 1.5 ± 0.1 mM after a 24-hour fast, 0.6 ± 0.1 mM in mice on CR and 1.2 ± 0.1 mM with administration of βOHb via an intraperitoneal pump (Fig. 2A). We collected tissues from fed or 24-hour–fasted mice and measured histone acetylation by immunoblotting. Acetylation of H3K₉ and H3K₁₄ reflect the competing activities of HATs and HDACs and influence gene expression in several species, including humans (13). Acetylation of H3K₉ and H3K₁₄ increased significantly in several organs in fasted mice, particularly kidney (Fig. 2B and figs. S8 and S9). In kidney, histone acetylation (H3K₉ and H3K₁₄) also increased two- to fivefold in mice under CR. Kidney histone acetylation and serum βOHb concentrations were strongly correlated for both histone H3K₉ (R² = 0.772) and histone H3K₁₄ (R² = 0.863) (Fig. 2C). We first focused on kidney, the organ with the largest changes in histone acetylation, to investigate the effects...
of βOHB on gene expression and cellular phenotype.

Histone acetylation induced by HDAC inhibitors is associated with transcriptional activation and repression of a subset of cellular genes (14). To identify genes whose expression changed in response to βOHB, we extracted mRNA for microarray analysis from mouse kidneys treated with βOHB or PBS for 24 hours. As βOHB is more abundant in fasting conditions, gene expression changes induced by βOHB may be a subset of those induced by fasting. Of 35,556 genes tested, 284 increased transcription in response to fasting (false discovery rate <0.2, Table S1). Four of the five genes with the largest changes in expression in response to βOHB were also activated in response to fasting as determined both by microarray and quantitative real-time polymerase chain reaction (QPCR) (P < 0.001 for such overlap via binomial distribution, Table S2 and S3). Ingenuity pathway analysis identified two of the five βOHB-induced genes (Mt2 and Lcn2) as regulated by FOXO3A. Overall, we found five genes in the FOXO3A network (Foxo3a, Mt2, Lcn2, Lmd3, and Hspb1) that had increased transcription in response to βOHB via QPCR (Fig. S10). Foxo3a, a transcription factor, induces cell-cycle arrest and resistance to oxidative stress (15). Metallothionein

Fig. 3. Increased expression of oxidative stress resistance genes in cells exposed to βOHB. (A) Expression of Foxo3a under various conditions (see Fig. 2 for details) measured by QPCR. Foxo3 expression is normalized to abundance of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Mean ± SE, *P < 0.05 by t test between paired conditions. (B) Expression of Mt2, measured as in (A). (C) Promoters of Mt2 and Foxo3a are enriched for acetylated histone H3K9 after βOHB treatment. HEK293 cells were treated with 10 mM βOHB or PBS for 24 hours. Chromatin was immunoprecipitated with anti-H3 or anti-AchH3, and the purified DNA was analyzed with primer pairs specific for the Foxo3a or Mt2 promoters. Results are the ratios of AchH3K9 to total histone H3. Mean ± SE, *P < 0.05 by t test between βOHB and PBS conditions. (D) HDAC depletion increases Foxo3a and Mt2 mRNAs abundance. HEK293 cells were transfected with shRNAs specific for each class I or class II HDAC, and mRNA abundance was measured by QPCR 72 hours after transfection. Mean ± SE, *P < 0.05 by t test versus control shRNA. (E) HDAC1, but not HDAC6, is enriched at the promoters of Mt2 and Foxo3a. ChiP analysis of the Foxo3a and Mt2 promoters (two primer pairs per promoter) and Gapdh (one primer pair) from HEK293 cells with control immunoglobulin G (IgG), anti-HDAC1, or anti-HDAC6. Relative promoter binding of each HDAC is normalized to input Gapdh. Mean ± SE, *P < 0.05 by t test versus IgG control.

of FOXO3A network identified two of the five HDAC targets that contribute to its protective activity against oxidative stress (15, 17). Protein immunoblotting of kidney tissue isolated from PBS- or βOHB-treated mice showed increased expression of FOXO3A, Mn-SOD, and catalase (Fig. 4A and figs. S13 and S14).

The effect on expression of MT2, FOXO3A, MnSOD, and catalase indicated that βOHB might have protective activity against oxidative stress. Carbonyl derivatives are formed by a direct metal-catalyzed oxidative attack on the amino acid side chains of proline, arginine, lysine, and threonine. Carboxylation is irreversible and unrepairable and accumulates as organisms age (18). To test the possible protective role of βOHB against oxidative stress, we implanted mice with a subcutaneous pump delivering either βOHB or PBS for 24 hours. They then received an intravenous injection of paraquat, which induces accumulation of reactive oxygen species. Kidney tissue was isolated after
2 hours, and protein carbonylation was assayed by protein immunoblotting with an antibody to dinitrophenyl (DNP) after derivatization of protein with dinitrophenylhydrazine (DNPH) (Fig. 4B). Paraquat treatment of control mice receiving a PBS infusion led to a twofold increase in carbonylated proteins. This increase in protein carbonylation was significantly suppressed (54 ± 9% decrease) in mice receiving βOHB (Fig. 4C).

We also examined another marker of oxidative stress: lipid peroxidation. 4-Hydroxynonenal (4-HNE) is a degradation product of polyunsaturated lipid and accumulates in response to oxidative stress (19). Kidney tissue sections from PBS- or paraquat-treated mice were stained with an antibody to 4-HNE, and the amount of 4-HNE staining was quantified with imaging software (Fig. S15). Paraquat treatment increased 4-HNE staining threefold in control mice (PBS) (Fig. 4D). This increase was completely suppressed in mice treated with βOHB. Lipid peroxides were also directly quantified in an enzyme-linked immunosorbent assay that measures conversion of ferrous ions to ferric ions. A twofold increase in lipid peroxide in response to paraquat was suppressed significantly by βOHB treatment (Fig. 4E). Thus, βOHB protects against paraquat-induced oxidative stress in mouse kidney.

Our observation that βOHB is an endogenous HDAC inhibitor present in organisms at millimolar concentrations during prolonged fasting and CR reveals an example of integration between metabolic status and epigenetic changes. We show that changes in histone acetylation and gene expression caused by βOHB promote stress resistance in the kidney. Future studies should investigate the specific gene expression and physiological effects of βOHB in other tissues. For example, low-carbohydrate diets that induce substantial ketogenesis are broadly neuroprotective and enhance resistance to oxidative stress. (Fig. 4. Protective effect of βOHB treatment against oxidative stress. (A) Amounts of catalase, MnSOD, or FOXO3A measured by protein immunoblotting in kidney tissue from 16-week-old mice implanted with an osmotic pump delivering PBS or βOHB (as in Fig. 2; n = 3); mean ± SE, *P < 0.05 by t test between PBS and βOHB conditions. (B) Protein carbonylation in kidney samples from mice implanted with an osmotic pump delivering PBS or βOHB (as in Fig. 2; n = 3) and treated with paraquat (50 mg/kg) or vehicle for 2 hours. Carboxylation was measured by immunoblotting with anti-DNP. All samples were run on a single gel; after imaging, lanes were rearranged for presentation. (C) Quantification of protein carbonylation in (B). Mean ± SE, *P < 0.05 by t test between PBS and βOHB conditions. (D) Sections of kidney obtained from the same mice as in (B) were stained with anti-4-HNE and quantified (see fig. S16 for primary picture). Mean ± SE, *P < 0.05 by t test between PBS and βOHB conditions. (E) Lipid peroxides were quantified in mice kidneys (LPO assay kit, Cayman, Ann Arbor, MI). Mean ± SE, *P < 0.05 by t test between PBS and βOHB conditions.

References and Notes

Acknowledgments: We thank J. Carroll for graphics, G. Howard and S. Orday for editorial assistance, V. Fonseca for administrative assistance, and A. Brunet (Stanford University) for reagents. Supported by funds from the Gladstone Institutes.

Supplementary Materials
www.sciencemag.org/cgi/content/full/science.1227166/DC1
Materials and Methods
Figs. S1 to S15
Tables S1 to S3
References (23–26)

9 July 2012; accepted 16 November 2012
Published online 6 December 2012; 10.1126/science.1227166