Human deoxyhypusine hydroxylase, an enzyme involved in regulating cell growth, activates O$_2$ with a nonheme diiron center

Van V. Vua, Joseph P. Emersona,1, Marlène Martinhob, Yeon Sook Kimc,2, Eckard Münkb, Myung Hee Parkc,3, and Lawrence Que, Jr.a,3

aDepartment of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455; bDepartment of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213; and cNational Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892

Edited by Edward I. Solomon, Stanford University, Stanford, CA, and approved July 14, 2009 (received for review April 24, 2009)

Deoxyhypusine hydroxylase is the key enzyme in the biosynthesis of hypusine containing eukaryotic translation initiation factor 5A (eIF5A), which plays an essential role in the regulation of cell proliferation. Recombinant human deoxyhypusine hydroxylase (hDOHH) has been reported to have oxygen- and iron-dependent activity, an estimated iron/holoprotein stoichiometry of 2, and a visible band at 630 nm responsible for the blue color of the as-isolated protein. EPR, Mössbauer, and XAS spectroscopic results presented herein provide direct spectroscopic evidence that hDOHH has an antiferromagnetically coupled diiron center with histidines and carboxylates as likely ligands, as suggested by mutagenesis experiments. Resonance Raman experiments show that its blue chromophore arises from a (μ-1,2-peroxo)diiron(II) center that forms in the reaction of the reduced enzyme with O$_2$, so the peroxo form of hDOHH is unusually stable. Nevertheless we demonstrate that it can carry out the hydroxylation of the deoxyhypusine residue present in the eIF5A substrate. Despite a lack of sequence similarity, hDOHH has a nonheme diiron active site that resembles both in structure and function those found in methane and toluene monooxygenases, and stearoyl-acyl carrier protein desaturase, giving rise to 2 absorption features at 320 nm and 630 nm with molar extinction coefficients indicative of ligand-to-metal charge transfer transitions (8). These features resemble those associated with diiron(III)-peroxo intermediates of the hydroxylase component of methane monooxygenase (MOMH) (12), stearoyl-acyl carrier protein desaturase (13, 14), the R2 proteins of class I HIV-1 protease (15–19), and the ferroxidase site of frog M ferritin (20, 21). Some of these intermediates have been characterized by resonance Raman spectroscopy and found to exhibit vibrational features typical of a (μ-1,2-peroxo)diiron(III) unit (13, 17, 20).

Here we report direct spectroscopic evidence for a diiron cluster in hDOHH. Interestingly, as-isolated hDOHH is blue in color, and the blue chromophore derives from a peroxo-bridged diiron(III) center that is generated by reaction of the reduced enzyme with oxygen. Comparisons with related diiron(III)-peroxo enzyme intermediates and synthetic complexes shed light on the nature of this active site and augments our understanding of the mechanism of oxygen activation by diiron enzymes.

Hypusine is an unusual, but highly conserved, amino acid that is found only in the eukaryotic translational initiation factor 5A (eIF5A), a protein that regulates cell proliferation (1, 2). The biosynthesis of eIF5A involves a posttranslational modification of the eIF5A precursor, where a lysine residue is first modified to deoxyhypusine (Dhp) by deoxyhypusine synthase (DHS) and then the nascent Dhp is hydroxylated by deoxyhypusine hydroxylase (DOHH) to form hypusine (Hpu) (Scheme 1) (1, 2). The hydroxylase activity of recombinant human DOHH (hDOHH) has been shown to depend on Fe(II) and not on any other physiologically relevant divalent metal ion. An estimated iron-to-holoprotein stoichiometry of 2 is observed (8). Sequence examination, homology modeling, and mutagenesis experiments suggest 2 possible iron binding sites consisting of histidine and carboxylate ligands (8, 9). Thus at first glance, hDOHH appears to resemble members of the superfamily of bacterial diiron multicomponent monooxygenases, like methane or toluene monooxygenase, that use nonheme diiron centers to activate oxygen for the hydroxylation of hydrocarbons (10–12). However there is little sequence similarity between the latter enzymes and DOHH (8).

hDOHH can be overexpressed in *Escherichia coli*, and the enzyme isolated from such cells is blue in color. This chromophore gives rise to 2 absorption features at 320 nm and 630 nm with molar extinction coefficients indicative of ligand-to-metal charge transfer transitions (8). These features resemble those associated with diiron(III)-peroxo intermediates of the hydroxylase component of methane monooxygenase (MOMH) (12), stearoyl-acyl carrier protein desaturase (13, 14), the R2 proteins of class I HIV-1 protease (15–19), and the ferroxidase site of frog M ferritin (20, 21). Some of these intermediates have been characterized by resonance Raman spectroscopy and found to exhibit vibrational features typical of a (μ-1,2-peroxo)diiron(III) unit (13, 17, 20).

Author contributions: V.V.V., J.P.E., E.M., M.H.P., and L.Q. designed research; V.V.V., J.P.E., M.M., Y.S.K., and M.H.P. performed research; V.V.V., M.M., and E.M. analyzed data; and V.V.V., E.M., and L.Q. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1Present address: Department of Chemistry, Mississippi State University, Mississippi State, MS 37962.
2Present address: Department of Dental Hygiene, Cheongju University, Cheongju, 360–764 Korea.
3To whom correspondence may be addressed. E-mail: larryque@umn.edu or mhpark@nih.gov.

This article contains supporting information online at www.pnas.org/cgi/content/full/0904553106/DCSupplemental.
Results

Evidence for an O₂-Activating Diiron Cluster in hDOHH. As-isolated hDOHH is blue in color, with characteristic UV-Visible absorption features at 320 nm and 630 nm (Fig. 1). The features are apparently the result of enzyme-bound iron, as they are absent in the iron-free apoenzyme (8). Upon addition of dithionite, these absorption features decrease slowly over ~3 h, but rapidly reappear upon exposure of the colorless solution to air, regaining approximately 80% of their initial intensities (Fig. 1 inset). The blue chromophore of hDOHH thus appears to undergo reduction by dithionite and regeneration by exposure to O₂. Reduced hDOHH therefore resembles many oxygen activating nonheme diiron enzymes like RNR R2, MMO, and δ/δ′ (12) in its ability to react readily with O₂.

As-isolated hDOHH is EPR silent. Its 4.2 K zero-field Mössbauer spectrum, shown in Fig. 2A, consists of a broadened doublet (representing 82% of total Fe) that can be simulated as a superposition of 2 doublets with sharp absorption lines of width 0.27 mm/s (FWHM). The 4 lines can either be assigned to a nested pair, with ΔE₀(1) = 1.16 (2) mm/s, δ(1) = 0.55 (1) mm/s and ΔE₀(2) = 0.88 (2) mm/s, δ(2) = 0.58 (1) mm/s, or to a nonnested pair with ΔE₀(1) = 1.05 (2) mm/s, δ(1) = 0.49 (1) mm/s and ΔE₀(2) = 0.99 (2) mm/s, δ(2) = 0.63 (1) mm/s. Spectra recorded at 4.2, 20, 50, and 80 K in an 8.0 T applied field show that these doublets belong to an antiferromagnetically coupled pair of high-spin Fe(III) ions, with 50 cm⁻¹ < J < 70 cm⁻¹ (with the convention H = JS₁S₂; S₁ = S₂ = 5/2). The solid lines in Fig. 2 are spectral simulations obtained with WMoss option 2Spin. The 8.0 T spectra can be simulated equally well for the nested or the nonnested pair. The sample also contained a high-spin Fe³⁺ contaminant representing ~18% of the Fe in the sample; a spectrum of this contaminant (Fig. S1) and comments on the fits of Fig. 2 C and D are presented in the Mössbauer spectroscopy section in SI Text.

Protein and Fe concentrations of the sample of Fig. 2A were 0.85 mM and 0.56 mM, respectively. Given that ~18% of the Fe belongs to the Fe(III) contaminant, these concentrations suggest that only 27% of the active sites were occupied by a diiron(III) cluster. Assuming that all absorption at 630 nm can be attributed to the diiron(III) cluster then yields for this sample e(630 nm) = 2,800 M⁻¹cm⁻¹.

Upon treatment with dithionite, the diiron(III) cluster is reduced into the diiron(II) state, hDOHH_{red}. This state exhibits 2 doublets characteristic of high-spin Fe(II), with ΔE₀(1) = 3.26 mm/s, δ(1) = 1.29 mm/s, and ΔE₀(2) = 2.90 mm/s, δ(2) = 1.29 mm/s (Fig. 2B). The sample also contained ~5% of the original diiron(III) cluster and a high-spin Fe(II) species with ΔE₀ = 2.4 mm/s (~20%). The percentage of the latter suggests that it represents the reduced form of the Fe(III) contaminant present in the as-isolated sample.

We have subtracted the remaining diiron(III) and the Fe(II) contaminant from the raw data to obtain the spectrum of Fig. 2B (see Fig. S2).

Evidence for a μ-PeroxyDiiron(III) Unit in hDOHH. Fig. 3 shows resonance Raman spectra of different hDOHH samples obtained with 647.1 nm excitation. The spectra of as-isolated and ¹⁶O₂-reoxidized hDOHH (hDOHH_{red}) overlay perfectly, indicating that the reoxidized blue species is identical to the as-isolated form (Fig. 3 A and B). Three features are observed in these spectra at 855 (observed as a Fermi doublet), 493 and 473 cm⁻¹. The combination of these features suggests a diiron(III)-peroxo chromophore, with observed features corresponding to ρ(O-O) and ρ(Fe-O₂) modes (13, 17, 20). In confirmation, ¹⁸O₂-labeled hDOHH (hDOHH_{is}), obtained by exposing hDOHH_{red} to ¹⁸O₂, exhibits features downshifted to 811, 476, and 457 cm⁻¹ (Fig. 3C), with Δν values of 44, 17, and 16 cm⁻¹, respectively, that are consistent with those expected for the mass change in the diatomic O-O and Fe-O oscillators (~50 cm⁻¹ and ~20 cm⁻¹, respectively). From this point on, we designate the blue form of hDOHH as hDOHH_{peroxo}.

For the sample prepared by exposing reduced hDOHH to a mixture of 25% ¹⁶O₂, 50% ¹⁸O₁⁶O and 25% ¹⁸O₂ (hDOHH_{is}), a band appears at 833 cm⁻¹, halfway between the ρ(O-O) bands in the hDOHH_{is} and hDOHH_{red} spectra, and is assigned to the ¹⁸O₁⁶O isotopomer (Fig. 3D). The 3 components of the ρ(O-O) band at 856, 833, and 811 cm⁻¹ exhibit an intensity ratio consistent with the isotopomer ratio of the mixed-labeled O₂ used. Because of the relatively large (~20–25 cm⁻¹) width of the individual features, the central component does not show evidence for the presence of distinct ¹⁶O₁⁸O and ¹⁸O₁⁸O isotopomers, as found for oxyhemerythrin (22), but resembles that observed for the mixed-labeled Δ³D peroxy intermediate (13), which has been assigned as having a symmetric 1,2-O-O bridge. The observations that hDOHH_{peroxo}...
photoreduction of the sample. The 1.9-eV downshift of the pho-

reduced hDOHH exposed to 16O, 18O, and mixed-labeled O (14O, 16O, and 18O18O). Background features because of the protein itself have been subtracted using the spectrum of fully reduced hDOHH collected under the same conditions. Experimental data are presented with thin lines and fits are presented with thick lines.

has a peroxo-to-iron(III) charge transfer band with λ_{max} of 630 nm and exhibits Raman spectra resembling those of other (μ-1,2-peroxo)diiron(III) centers in proteins and model complexes (Table 1) lead us to propose that the O-O moiety in hDOHH$_{\text{peroxo}}$ also bridges the 2 iron atoms in a μ-1,2 mode.

Fig. 4A shows X-ray absorption near edge spectra (XANES) of hDOHH. For the as-isolated enzyme, the K-edge energy was observed to downshift from 7126.3 eV in the first scan to 7124.4 eV for the as-isolated enzyme, the K-edge energy was observed to downshift from 7126.3 eV in the first scan to 7124.4 eV with increasing exposure to the synchrotron beam, suggesting that roughly half of the Fe(III) sites in the frozen as-isolated sample in the layer exposed to X-ray beam were reduced to Fe(II), resulting in an edge energy that is the average of the diiron(III) and diiron(II) species. The same stepwise progression has been observed for MMOH as the diiron(III) form was reduced to the diiron(II) form 1 electron at a time (35).

Information about the iron coordination number can be deduced from the intensity of the preedge feature that is attributed to 1s \rightarrow 3d transitions (36). The preedge areas of 12.0 units for hDOHH$_{\text{peroxo}}$ and 13.8 units for hDOHH$_{\text{phr}}$ are similar to those of the diiron(III) forms of others, Δ^D (\approx11–15.5 units) (37), metHrN$_{\text{II}}$ (\approx10.4 units), and RNR R$_{\text{met}}$ (10.1 units) but larger than those for the diiron(II,III) form of uteroferrin (4.8 units) (38). The larger preedge areas associated with hDOHH suggest that its iron centers deviate significantly from centrosymmetry with likely coordination numbers of 5.

Because of its superior signal-to-noise ratio we have focused on the analysis of the extended X-ray absorption fine structure (EXAFS) data of hDOHH$_{\text{phr}}$ with maximum usable data extending to 14 Å$^{-1}$ (Fig. 4B). The Fourier transform of the k^3-weighted EXAFS

![Figure 3](image-url) Fig. 3. Resonance Raman spectra of hDOHH samples. (A) as-isolated hDOHH. (B–D) reduced hDOHH exposed to 16O, 18O, and mixed-labeled O (14O, 16O, and 18O18O). Background features because of the protein itself have been subtracted using the spectrum of fully reduced hDOHH collected under the same conditions. Experimental data are presented with thin lines and fits are presented with thick lines.

![Figure 4](image-url) Fig. 4. X-ray absorption spectroscopic analysis of hDOHH. (A) XANES spectra of hDOHH$_{\text{peroxo}}$ first scans (—), hDOHH$_{\text{phr}}$ (—), and hDOHH$_{\text{met}}$ (—). (B and C) Fe K-edge EXAFS data $k^2\chi(k)$ of hDOHH$_{\text{phr}}$ and hDOHH$_{\text{peroxo}}$ and their Fourier transforms (thin lines) in k range = 2–14 Å$^{-1}$ and 2–11.8 Å$^{-1}$, respectively. Best fits are represented by the thick lines. Details of the fitting protocols are provided in Table S1.

Table 1. Properties of diiron(III)-peroxo units in enzymes and related model complexes

<table>
<thead>
<tr>
<th>Species</th>
<th>λ (nm)</th>
<th>δ (mm/s)</th>
<th>ΔE_0 (mm/s)</th>
<th>J (cm$^{-1}$)</th>
<th>χ(O-O) (cm$^{-1}$)</th>
<th>r(Fe-Fe) (Å)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>hDOHH$_{\text{peroxo}}$</td>
<td>630</td>
<td>0.55, 0.58</td>
<td>1.16, 0.88</td>
<td>50–70</td>
<td>855</td>
<td>3.44</td>
<td>This work</td>
</tr>
<tr>
<td>MMOH</td>
<td>725</td>
<td>0.66</td>
<td>1.51</td>
<td></td>
<td></td>
<td></td>
<td>(23)</td>
</tr>
<tr>
<td>D84E R2</td>
<td>700</td>
<td>0.63</td>
<td>1.90, 1.06</td>
<td>70</td>
<td>851</td>
<td>2.53</td>
<td>(21, 24)</td>
</tr>
<tr>
<td>Frog M Ferritin</td>
<td>650</td>
<td>0.62</td>
<td>1.08</td>
<td></td>
<td></td>
<td></td>
<td>(26)</td>
</tr>
<tr>
<td>ToMOH</td>
<td>500</td>
<td>0.54</td>
<td>1.09, 1.92</td>
<td>154</td>
<td>844</td>
<td></td>
<td>(27, 28)</td>
</tr>
<tr>
<td>OxyHr</td>
<td>694</td>
<td>0.66</td>
<td>1.40</td>
<td>66</td>
<td>885</td>
<td>4.01</td>
<td>(29, 30)</td>
</tr>
<tr>
<td>1*</td>
<td>600</td>
<td>0.51</td>
<td>0.80</td>
<td>85</td>
<td>900</td>
<td>3.46</td>
<td>(31, 32)</td>
</tr>
<tr>
<td>2*</td>
<td>644</td>
<td>0.50</td>
<td>1.31</td>
<td></td>
<td>908</td>
<td>3.40</td>
<td>(33)</td>
</tr>
<tr>
<td>3*</td>
<td>700 (br)</td>
<td>0.58, 0.65</td>
<td>0.74, 1.70</td>
<td></td>
<td></td>
<td>3.33</td>
<td>(34)</td>
</tr>
</tbody>
</table>

*Mössbauer data can be assigned either to a nested pair of doublets with parameters shown in plain text or to an overlapping pair of doublets with parameters shown in italics.

1No chromophore observed.

2[Fe$_2$(N$_6$-HPTB)(μ-O$_2$)(CH$_3$CO$_2$)] (pz = pyrazole).

3[Fe$_2$(N$_6$-HPTB)(μ-O$_2$)(OPPh$_3$)$_2$] (N$_6$-HPTB – anion of N,N'-N'-tetraakis(1-ethylbenzimidazolyl-2'-methyl)-2-hydroxy-1,3-diaminopropane).

4[Fe$_2$(N$_6$-BPP)(μ-O$_2$) (μ-OH)$_2$] (6-Me$_2$-BPP = N,N'-bis(2-methyl-2-pyridylmethyl)-3-aminopropionate).

5[Fe$_2$(Ph-bimp)(μ-O$_2$)$_2$] (Ph-bimp = 2-bis[1(methyl-4,5-diphenylimidazolyl)methyl aminomethyl]-4-methylphenolate).

Vu et al.
is 2.05 Å, which is 0.03 Å shorter than that for DOHH
with the change in the diiron oxidation state. The lengthening of the
Fe distance has also been observed in a similar study of
Can Hydroxylate the Deoxyhypusine Residue
in eIF5A. The decay of DOHH_peroxo was monitored by following the change in A_peroxo at different incubation times in the absence of eIF5A(Dhp) and in the presence of eIF5A(Dhp). Yields of hypusine and deoxyhypusine (Dhp) are calculated on the basis of the observed amounts of hypusine (Hpu) and deoxyhypusine (Dhp); % Hpu = (Hpu × 100)/(Hpu + Dhp).

Fig. 5. Reaction of hDOHH_peroxo with 1 equiv. of substrate, deoxyhypusine-containing eIF5A. The decay of hDOHH_peroxo was monitored by following the change in A_peroxo at different incubation times in the absence of eIF5A(Dhp) and in the presence of eIF5A(Dhp). Yields of hypusine and deoxyhypusine (Dhp) are calculated on the basis of the observed amounts of hypusine (Hpu) and deoxyhypusine (Dhp); % Hpu = (Hpu × 100)/(Hpu + Dhp).

Data exhibits prominent peaks at 1.6 and 3 Å. The \(r' = 1.6 \) Å feature of the hDOHH_peroxo data is best fit with 5 O/N scatterers at 2.08 Å, consistent with the preedge analysis. The average iron-ligand bond distance of 2.08 Å is close to those associated with the principal shell of scatterers in the iron(II)iron(III) forms of MMOH (2.06–2.09) (2 histidine/4 carboxylate ligand set) (35) but shorter than the 2.13 Å average distance found in semimethH\textsubscript{2}N\textsubscript{2} (5 histidine/2 carboxylate ligand set) (39), suggesting a ligand set with more carboxylate ligands than histidines.

The \(r' = 3 \) Å feature corresponds to an Fe scatterer at 3.44 Å, the addition of which significantly improves the fit quality (compare Fits in bold text in Table S1). This 3.44-Å distance is close to the Fe–Fe distances found in the iron(II)iron(III) sites of photoreduced MMOH (35), uteroferrin (38), and semimethH\textsubscript{2}N\textsubscript{2} (39). EXAFS analysis thus further corroborates the diiron nature of the active site of hDOHH_peroxo.

We have collected first scans on 5 different fresh spots of an as-isolated hDOHH sample, during which photoreduction yield is estimated to be at most \(\sim 25\% \) at \(k = 12 \pm 1 \) Å\(^{-1}\) based on the edge position of the second scans (further details provided in the X-ray absorption spectroscopy section (XAS) in SI Text, Figs. S3–S5, and Table S2). The summation of these first scans enables us to carry out a preliminary structural analysis of hDOHH_peroxo. The best fit to the k\(^2\)-weighted EXAFS data of hDOHH_peroxo (Table S1) also gives an Fe–Fe distance of 3.44 Å, suggesting that the iron atoms do not move from their original positions upon photoreduction at \(\sim 20 \) K. Interestingly, the average Fe–O/N distance in the first shell is 2.05 Å, which is 0.03 Å shorter than that for DOHH_peroxo, consistent with the change in the diiron oxidation state. The lengthening of the average first-shell distance upon photoreduction without changing the Fe–Fe distance has also been observed in a similar study of MMOH (35).

Long-Lived hDOHH_peroxo Can Hydroxylate the Deoxyhypusine Residue in eIF5A. Fig. 5 shows the fate of hDOHH_peroxo upon treatment of 1 equivalent (equiv.) of its protein substrate, deoxyhypusine-containing eIF5A [eIF5A(Dhp)]. At room temperature, the absorption at 630 nm of hDOHH_peroxo shown above to result from a peroxo-to-iron charge transfer transition, slowly decreases with time. Upon addition of eIF5A(Dhp), the decay rate of A_peroxo increases and is comparable to the rate of hypusine formation. After 24 h incubation, deoxyhypusine is almost completely converted to hypusine (\(\sim 96\% \)) and hDOHH_peroxo turns yellow (Fig. S6). This result indicates that long-lived hDOHH_peroxo is activated by substrate binding and carries out the hydroxylation of deoxyhypusine in eIF5A.

Discussion

Our spectroscopic studies have shown that recombinant human DOHH has a nonheme diiron active site, the reduced form of which can react readily with oxygen. This finding extends the family of oxygen-activating nonheme diiron enzymes (10–12, 40) to include for the first time a hydroxylase that is not of bacterial origin and is of vital importance for human metabolism. These nonheme diiron enzymes are capable of carrying out a variety of dioxygen-dependent chemical transformations under mild physiological conditions, including methane hydroxylation by MMO, desaturation of fatty acids by \(\alpha \)-D and related desaturases, and the generation of a catalytically essential tyrosyl radical by R2 in DNA biosynthesis (12).

Despite their functional diversity, the diiron enzymes characterized thus far share a common structural motif. The enzymes all have a pair of conserved (D/E)X\textsubscript{36–37}EX\textsubscript{H} ligand sequence motifs that provide the ligands to a common diiron active site formed within a 4-\(\alpha \)-helix bundle (40). hDOHH appears not to follow this pattern. Instead, hDOHH has a pair of conserved HEX\textsubscript{3}HE sequences that are symmetrically located near the C and N termini, which possibly provide the metal binding ligands (9). On the basis of homology modeling and circular dichroism experiments, the overall structure of hDOHH has been proposed to contain a dyad of 4 consecutive \(\alpha \)-haaipins (called a HEAT repeat motif) surrounding the active site (9). Mutagenesis experiments show that both iron binding and activity are lost upon single mutations of the H\textsubscript{3}E\textsubscript{3}, H\textsubscript{3}H\textsubscript{3}, and E\textsubscript{3}H\textsubscript{3} residues of each HEX\textsubscript{3}HE sequence to A, but mutation of the E\textsubscript{n+1} residues to A results in loss of activity but with no loss in iron content (8). These results suggest a 4-His-2-carboxylate ligand set for hDOHH, which is different from the 2-His-4-carboxylate ligand set found in many oxygen-activating diiron enzymes (40). However, EXAFS analysis of hDOHH shows that the average Fe–O/N bond length from the principal shell of ligands to the iron is in fact comparable to those found for diiron enzymes with 2-His-4-carboxylate ligand sets, but shorter than that of the histidine-rich diiron site in hemerythrin (Table S3), so additional experiments are needed to determine which ligands are bound to the diiron site of hDOHH.

In contrast, the accumulated spectroscopic information on hDOHH does shed some light on the nature of its nonprotein-derived ligands. Clearly established is a dioxygen-derived ligand that is identified by resonance Raman experiments to be a peroxide (Fig. 3); this result shows that dioxygen binding to hDOHH_red occurs in the Fe–O/N bond length from the principal shell of ligands to the iron in fact comparable to those found for diiron enzymes with 2-His-4-carboxylate ligand sets, but shorter than that of the histidine-rich diiron site in hemerythrin (Table S3). In addition, the 3 Å feature is indicative of bound dioxygen (38), and is in fact comparable to the distance found in MMOH. The Fe distance of 3.4 Å is close to those associated with the principal shell of the FeII and FeIII states of MMOH (35), uteroferrin (38), and semimethH\textsubscript{2}N\textsubscript{2} (39). EXAFS analysis thus further corroborates the diiron nature of the active site of hDOHH_peroxo.

We have collected first scans on 5 different fresh spots of an as-isolated hDOHH sample, during which photoreduction yield is estimated to be at most \(\sim 25\% \) at \(k = 12 \pm 1 \) Å\(^{-1}\) based on the edge position of the second scans (further details provided in the X-ray absorption spectroscopy section (XAS) in SI Text, Figs. S3–S5, and Table S2). The summation of these first scans enables us to carry out a preliminary structural analysis of hDOHH_peroxo. The best fit to the \(k^2 \)-weighted EXAFS data of hDOHH_peroxo (Table S1) also gives an Fe–Fe distance of 3.44 Å, suggesting that the iron atoms do not move from their original positions upon photoreduction at \(\sim 20 \) K. Interestingly, the average Fe–O/N distance in the first shell is 2.05 Å, which is 0.03 Å shorter than that for DOHH_peroxo, consistent with the change in the diiron oxidation state. The lengthening of the average first-shell distance upon photoreduction without changing the Fe–Fe distance has also been observed in a similar study of MMOH (35).

Long-Lived hDOHH_peroxo Can Hydroxylate the Deoxyhypusine Residue in eIF5A. Fig. 5 shows the fate of hDOHH_peroxo upon treatment of 1 equivalent (equiv.) of its protein substrate, deoxyhypusine-containing eIF5A [eIF5A(Dhp)]. At room temperature, the absorption at 630 nm of hDOHH_peroxo shown above to result from a peroxo-to-iron charge transfer transition, slowly decreases with time. Upon addition of eIF5A(Dhp), the decay rate of A_peroxo increases and is comparable to the rate of hypusine formation. After 24 h incubation, deoxyhypusine is almost completely converted to hypusine (\(\sim 96\% \)) and hDOHH_peroxo turns yellow (Fig. S6). This result indicates that long-lived hDOHH_peroxo is activated by substrate binding and carries out the hydroxylation of deoxyhypusine in eIF5A.
Fig. 6. Proposed core structure of hDOHH\textsubscript{peroxo}

those peroxo complexes with an additional hydroxo or alkoxo bridge (31, 33, 34) (but not an oxo bridge, because it gives rise to shorter Fe–Fe distances of 3.1 ± 0.1 Å, refs. 32, 33). On the basis of these results, we propose the dibridged diiron(III) core structure of hDOHH\textsubscript{peroxo} shown in Fig. 6. The 3.44-Å Fe–Fe distance found in hDOHH\textsubscript{peroxo} stands in distinct contrast to the much shorter 2.5-Å Fe–Fe distances determined by EXAFS for the peroxo intermediates of W48A/D84E R2 (16) and the ferroxidase site of frog M ferritin (21). Such very short metal–metal separations are found only for synthetic complexes that have 2 or 3 single-atom bridges (42, 43). Despite this apparent difference, these 3 diiron(III)-peroxo intermediates exhibit ν(O–O) Raman features of comparable frequency, at 855, 868 (observed for the peroxo intermediate of W48A/D84E R2 and assumed to resemble that of W48A/D84E R2 in structure), and 851 cm\(^{-1}\), respectively (18, 21). The similarity of the ν(O–O) values suggests that the diiron-peroxo core structures may not be as different as suggested by the EXAFS results. This notion derives from a model developed by Brunold and Solomon to rationalize the vibrations of (μ-1,2-peroxo)diiron(III) complexes (44). In this model, the observed ν(O–O) frequency is modulated by mechanical coupling of the O-O and the Fe-O stretching modes, the extent of which is governed by the Fe-O-O angle. As the Fe-O-O angle is related to the Fe–Fe distance, the ν(O–O) can reflect the Fe–Fe distance. This mechanical coupling model is supported by a recent study of a series of synthetic (cis-μ-1,2-peroxo)diiron(III) complexes (32). Indeed, a detailed spectroscopic and DFT analysis of the W48F/D84E R2 peroxo intermediate also questions the 2.5-Å Fe–Fe distance deduced by EXAFS and favors an Fe–Fe distance of 3.68 Å (18) that is closer to the 3.44 Å distance we have determined for hDOHH\textsubscript{peroxo} by EXAFS analysis. On the basis of the calculations, it is proposed that the R2 peroxo intermediate has a (cis-μ-1,2-peroxo)diiron(III) center supported by 2 bidentate carboxylate bridges. The absence of a single-atom bridge may rationalize why the predicted Fe scatterer is not observed at 3.7 Å in the EXAFS analysis. There thus appears to be a discrepancy between the Raman and EXAFS results for the peroxo intermediates of D84E R2 and frog M ferritin, which will need to be resolved. For hDOHH\textsubscript{peroxo}, however, the Raman and EXAFS results are in good agreement with respect to the Fe–Fe distance.

Lastly, it is interesting that it is the hDOHH\textsubscript{peroxo} form that is isolated directly from the expression strain. Its blue chromophore passes for at least several days at room temperature, so its stability surpasses even that of peroxo ΔD, the peroxo intermediate obtained from chemically reduced ΔD, which has a half-life of ∼30 min at room temperature (14). Thus the lifetimes of diiron-peroxo intermediates of these enzymes vary significantly and can range from milliseconds to days (14–20, 23). Interestingly, the decay of hDOHH\textsubscript{peroxo} is accelerated by the addition of its substrate, the deoxyhypusine-containing elF5A. But more remarkable is the observation that the deoxyhypusine residue is in fact hydroxylated to hypusine (Fig. 5). This result implicates hDOHH\textsubscript{peroxo} as an intermediate on the catalytic pathway of hDOHH.

The extended stability of active hDOHH\textsubscript{peroxo} raises the questions of what makes it stable and how it is activated. From their studies of W48F/D84E R2, Skukan et al. conclude that a cis-μ-1,2-peroxo form is the most stable structure for the diiron(III)-peroxo intermediate and must undergo a structural change before O–O bond formation to generate the high-valent iron oxidant (18). The additional single-atom bridge deduced to be present in the diiron(III)-peroxo unit in hDOHH\textsubscript{peroxo} (Fig. 6) is likely to further stabilize the cis-μ-1,2-peroxo structure, raising the barrier for O-O bond cleavage to form the high-valent iron oxidant. Indeed a number of metastable synthetic complexes are characterized to have core structures like that shown in Fig. 6; some in fact are stable enough to have been crystallized (31–34). As the target hydroxylation site of hDOHH resides on a protein substrate, it seems plausible that substrate binding triggers a conformation change that activates the (μ-1,2-peroxo)diiron(III) intermediate to carry out elF5A(Dhp) hydroxylation (Scheme 1). The important role of such protein–protein interactions in modulating enzyme activity has been demonstrated for several diiron enzymes (45–47). As the in vitro reaction of hDOHH\textsubscript{peroxo} with its protein substrate is very slow, additional protein factors yet to be identified may be required to further accelerate this reaction in the cell.

Materials and Methods

Protein expression and purification was carried out as described previously by Park et al. (8, 9). To prepare 57Fe-hDOHH, −10 mg of 57Fe (Cambridge Isotope Laboratories) metal was dissolved in 0.1 mL concentrated H2SO4/HNO3 (3:1) and added to the culture (5 L) at induction. Typical enzyme sample purified by 1-step GSH affinity chromatography is a mixture of 30–50% holoenzyme and 50–70% apoenzyme, designated as iso-activated sample.

Reduction and Reoxidation of hDOHH. Sodium dithionite (Sigma-Aldrich) was dissolved in anaerobic buffer, and the concentration was determined using cis-μ-8000 M\(^{-1}\)cm\(^{-1}\) (48). Protein solutions were made anaerobic in conical vials or in cuvettes sealed with septa by equilibrating under argon atmosphere for 2 h in an ice bath. For tandem reduction-oxidation study, approximately 2.2 equiv. (with respect to diiron cluster) of dithionite was added to the protein solution in a sealed cuvette and the cuvette was opened to introduce oxygen after X\(_{\text{Aer}}\) reached a minimum value. For resonance Raman studies, 10 equiv. of dithionite was used, and after complete reduction (judged by UV/Vis spectroscopy) protein samples were equilibrated with anaerobic buffer using 10 K cut-off spin-filters (Pall) in an anaerobic glove box until no dithionite was detected in the flow through solution before exposure to dioxygen sources.

Activity Assay. Approximately 800 μL solution of −50 μM hDOHH\textsubscript{peroxo} and −50 μM deoxyhypusine-containing elF5A in Tris-HCl buffer pH 7.5 was incubated at room temperature for 24 h. At each incubation time a UV/Vis spectrum was collected and 100 μL reaction solution was mixed with 100 μL 20% trichloroacetic acid solution. Self-decay of hDOHH\textsubscript{peroxo} was monitored under the same conditions but without protein substrate. Hypusine and deoxyhypusine quantification was then carried out as described elsewhere (49).

Spectroscopic Studies. Electron paramagnetic resonance spectroscopy (EPR) spectra were recorded in both perpendicular and parallel modes at X-band and Bruker E500 spectrometer equipped with an Oxford ESR-910 cryostat. Mössbauer spectra were collected with constant acceleration spectrometers, using 2 cryostats that allowed studies at 4.2 K in applied fields up to 8.0 T. Isomer shifts are reported with respect to iron metal at 298 K. The WM OSS software package (WEB Research) was used to analyze the data. Resonance Raman experiments were performed on an ACTON AM-506 spectrophotometer (1,200-groove grating) with a Princeton Instruments LNCCD-1100-PB UVIR detector cooled to −120 °C with liquid nitrogen. The 647.1 nm excitation line at 100-mW power was provided by a Spectra-Physics BeamLok 2060-KR-5R krypton ion laser, which is filtered out by a Kaiser Optical holographic super notch filter. Samples were contained in flat-bottomed NMR quartz tubes and maintained at a temperature range of −10 °C to 10 °C, and spectra were collected in 90° scattering geometry at resolution of 0.4 cm\(^{-1}\) and referenced to indene. Typically, 256 accumulations of 30-s exposures were collected for each sample. UV/Vis spectra of sample show no change after laser exposure. GRAMS/3A (Thermo Galactic) was used for baseline correction and curve fitting.

X-ray absorption (XAS) data were collected in fluorescence mode on beamline
Figs. 53–55, 57, and Table 53.

