A SIMPLE SYNTHESIS OF D-MYO-INOSITOL 4-PHOSPHATE AND D-MYO-INOSITOL 6-PHOSPHATE

Sarah Iacobucci and Marc d'Alarcao*

*Michael Chemistry Laboratory, Department of Chemistry
Tufts University, Medford, MA 02155

ABSTRACT

A simple synthesis of the title compounds from myo-inositol is reported. The procedure involves the regioselective dibutyltin oxide-promoted acylation of racemic 1,2:5,6-dicyclohexylidene-myoinositol (2) with 1-(S)-(−)-camphanyl chloride followed by chromatographic separation of the resulting diastereomers.

The discovery that inositol phosphates are intimately involved in various biological signal transduction processes\(^1\).\(^2\) has rekindled considerable interest in inositol chemistry in recent years. Of particular interest has been the preparation of optically pure myo-inositols in which the six hydroxyl groups are differentially protected.\(^3\) As part of a program aimed at the synthesis of inositol glycans implicated in insulin signal transduction,\(^2\).\(^4\) we needed access to large amounts of an optically pure D-myo-inositol derivative maintaining a free 6-hydroxyl group and protected elsewhere by a scheme that would allow selective deprotection at the 1-hydroxyl group. In this communication we describe a simple synthesis of inositols 3a and 3b which meet these requirements, and their respective elaboration to D-myo-inositol 4-phosphate (1) or its enantiomer\(^5\) D-myo-inositol 6-phosphate,\(^6\)

* To whom correspondence may be addressed

809

Copyright © 1994 by Marcel Dekker, Inc.
an intermediate in the biological dephosphorylation cascade of 1,4,5-inositol triphosphate.1

Results and Discussion

Racemic 1,2:5,6-dicyclohexyldene-\textit{myo}-inositol (2, FIG 1) was prepared from \textit{myo}-inositol by a variation of the known procedure.7 Treatment of diol 2 with Bu$_2$SnO in benzene to produce the dibutylstannylene derivative8 followed by addition of 1-(\textit{S}')(\textendash)(\textendash)-camphanyl chloride resulted in selective acylation at the C-3(1) hydroxyl to produce alcohols 3 in quantitative yield.

FIG 1

\[
\begin{align*}
\text{racemic} \\ 2 \\
\xrightarrow{1) \text{Bu}_2\text{SnO, benzene}} \\
\xrightarrow{2) 1-(\textit{S}')(\textendash)(\textendash)-camphanyl chloride} \\
\text{3a} \\
\xrightarrow{\text{H}_2, \text{Pd}/\text{C}, \text{EtOH}} \\
\text{Cam} = \begin{array}{c}
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O}
\end{array} \\
\end{align*}
\]

It is interesting to note that benzylaion of the stannylene derivative of 2 has also been reported8 to be regioselective, but with the \textit{opposite} regiochemistry; i.e. benzylaion occurs predominantly at the C-4(6)-hydroxyl. These data may be reconciled, as suggested by David and Hanessian9 for other carbohydrate stannylenes, if the reactive stannylene species in solution is a dimer such as 5.
MYO-INOSITOL PHOSPHATES

(Fig 2).10 Faster reaction of electrophiles at the oxygen atoms which occupy only
the apical positions of the trigonal bipyramids would be expected to produce the 4-
acylated or alkylated inositol as the kinetic product. Subsequent vicinal acyl (but
not alkyl) migration would account for the ultimate formation of the observed 3-
acyl product.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{fig2.png}
\caption{FIG 2}
\end{figure}

It has been suggested9 that in stannylene complexes of diols the more
electronnegative oxygen atom occupies the apical position. If we assume that the
oxygen at C-4 of 2 is more electronnegative than that at C-3, then the proposed
stannylene structure 5 and the apparent thermodynamic preference for 3-acylation
follow consistently. However, we do not know why the C-4 oxygen of 2 may be
more electronnegative.

Separation of the camphanyl diastereomers 3 was accomplished by silica gel
chromatography. The identity of the 1-camphanyl-\textit{D}-myo-inositol-containing
diastereomer 3\textsubscript{a} was established by its preparation from known inositol 4 whose
structure has been determined unequivocally11 (Fig 1).

The synthesis of \textit{D}-myo-inositol-4-phosphate (1) was completed as shown in
Fig 3. Phosphitylation and oxidation by the Fraser-Reid procedure8 afforded fully
protected phosphoinositol 6 in quantitative yield. Deprotection was accomplished by catalytic hydrogenolysis (Pd/C), acidic deketalization (85% HOAc), and LiOH deacylation to afford 1 in overall 41% of the theoretical yield (from 2). Similar treatment of the 1-camphanyl-\textit{D}-\textit{myo}-inositol diastereomer 3a produced \textit{D}-\textit{myo}-inositol 6-phosphate in 41% yield from 2.

FIG 3

![Diagram of chemical structures and reactions](attachment:image.png)

1) H$_2$, Pd/C
2) 85% HOAc
3) 1 M LiOH
THF-H$_2$O
4) H$^+$, resin
5) cyclohexylamine
H$_2$O/acetone

Experimental Section

All moisture sensitive reactions were carried out under an argon or nitrogen atmosphere. Organic extracts were dried with anhydrous magnesium sulfate. Solvents were removed \textit{in vacuo} on a Büchi rotary evaporator. Solvents and reagents obtained from commercial sources were used without further purification with the following exception: benzene was distilled from sodium-benzophenone.
Reactions were routinely monitored by TLC on Baker glass backed silica gel plates (0.25 μm thickness) with a 254 nm fluorescent indicator. The chromatograms were visualized by dipping in an ethanolic solution of 2.5% p-anisaldehyde, 3.5% sulfuric acid and 1% acetic acid followed by heating. Preparative separations were performed either by flash chromatography on Baker silica gel (40 μm), or by gravity chromatography on Baker silica gel (60-200 μm). Melting points are uncorrected. Phosphate assays were performed colorimetrically by the phosphomolybdate method.12 NMR data were obtained on a Bruker AM-300FT NMR spectrometer. TMS (0.03%) was used as an internal standard for 1H NMR and H$_3$PO$_4$·d$_3$ (85% in D$_2$O) was used as an external standard for 31P NMR. High resolution mass spectrometry data were obtained on a JEOL AX-505 or JEOL SX-102 mass spectrometer using FAB as the ionization method.

1-(1-(S)-Camphanyl)-2,3:4,5-dicyclohexylidene-D-myo-inositol (3a) and 3-(1-(S)-camphanyl)-1,2:5,6-dicyclohexylidene-D-myo-inositol (3b). A suspension of 1.42 g (4.18 mmol) racemic 1,2:5,6-dicyclohexylidene-myo-inositol (2)7 and 1.07 g (4.29 mmol) dibutyltin (IV) oxide in 40 mL of benzene was fitted with a distillation head and placed in an oil bath at 110 °C until most of the benzene had distilled. An additional portion of benzene (40 mL) was added to the residue. To this was added 1.13 g (5.21 mmol) of (1S)-(−)-camphanic chloride and the reaction was stirred at 20 °C for 1 h. The mixture was poured into 100 mL of 1M aqueous NaHCO$_3$ and extracted with CHCl$_3$ (3 X 100 mL). The extracts were dried, evaporated, and carefully chromatographed on a 500 g silica gravity column (compound was loaded by dry packing) eluting with ether:hexane (7:3). This provided pure 3a and 3b, combined yield: 2.2 g (100%). Alternatively, the two diastereomers may be separated by preparative HPLC: 1" diameter silica column, elution with 1:9 i-PrOH : hexane, flow rate 25 mL/min. Under these conditions 3b eluted at 6.08 min and 3a eluted at 6.95 min.
For 3a: \(R_f = 0.37 \) (70% ether-hexane) \(^1\)H NMR (CDCl\(_3\)) \(\delta 1.00 \) (s, 3H, CH\(_3\)), 1.13 (s, 3H, CH\(_3\)), 1.26 (s, 3H, CH\(_3\)), 1.40, 1.50 - 1.76 (2m, 21H), 1.96 (m, 1H), 2.09 (m, 1H), 2.47 (m, 1H), 2.67 (br s, 1H, OH), 3.40 (\(\psi t \), 1H, H5), 3.74 (dd, 1H, J = 8.6, 10.1 Hz, H4), 4.17 (dd, 1H, J = 7.2, 9.6 Hz, H6), 4.32 (dd, 1H, J = 5.4, 8.6 Hz, H3), 4.66 (\(\psi t \), 1H, H2), 5.04 (dd, 1H, J = 5.0, 7.2, H1). MS (high resolution) found 521.2764 (calcd for C\(_{28}\)H\(_{41}\)O\(_9\) [M+H]+ 521.2750).

For 3b: \(R_f = 0.45 \) (70% ether-hexane) \(^1\)H NMR (CDCl\(_3\)) \(\delta 1.04 \) (s, 3H, CH\(_3\)), 1.07 (s, 3H, CH\(_3\)), 1.13 (s, 3H, CH\(_3\)), 1.40, 1.54 - 1.74 (2m, 21H), 1.95 (m, 1H), 2.07 (m, 1H), 2.50 (m, 1H), 2.81 (d, 1H, J = 3.4 Hz OH), 3.40 (\(\psi t \), 1H, H5), 3.73 (dd, 1H, J = 8.6, 10.2 Hz, H6), 4.20 (ddd, 1H, J = 3.4, 7.2, 9.7 Hz, H4), 4.32 (dd, 1H, J = 5.4, 8.6 Hz, H1), 4.67 (\(\psi t \), 1H, H2), 5.00 (dd, 1H, J = 5.0, 7.2, H3). MS (high resolution) found 521.2768 (calcd for C\(_{28}\)H\(_{41}\)O\(_9\) [M+H]+ 521.2750).

3 - (1 - (S) - Camphanyl) - 1 , 2 : 5 , 6 - di - cyclohexylidene - 4 - (dibenzyolphosphoryl)-D-myo-inositol (6). Alcohol 3b (20 mg, 0.038 mmol) and 1H-tetrazole (32 mg, 0.46 mmol) were combined and dried by coevaporation with toluene (2 X 5 mL), then dissolved in CH\(_2\)Cl\(_2\) (1.5 mL). After adding the dibenzyl N,N-diethylphosphoramidite (36 \(\mu \)L, 0.1152 mmol) the mixture was stirred at 20 °C and the progress of the reaction was monitored by TLC (85% ether-hexane). When the starting alcohol was consumed (~ 1 h) the reaction was cooled to -40 °C and a solution of m-chloroperbenzoic acid (66 mg, 0.31 mmol) in CH\(_2\)Cl\(_2\) (0.7 mL) was added. The reaction was warmed to 0 °C, allowed to stir for 30 min, then allowed to warm to 20 °C. CH\(_2\)Cl\(_2\) (5.5 mL) was added and the organic phase was washed with 10% aqueous Na\(_2\)SO\(_3\) (2 X 3 mL), 10% aqueous NaHCO\(_3\) (2 X 2 mL), H\(_2\)O (2 mL), and brine (2 mL), then dried (MgSO\(_4\)) and chromatographed (flash, elution with 85% ether-hexane) to produce 6 (31 mg, crude product): This material may be purified to homogeneity by further chromatography (100% yield) or used crude in the next step.
MYO-INOSITOL PHOSPHATES

Rf = 0.67 (85% ether-hexane); 1H NMR (CDCl$_3$) δ 0.93 (s, 3H, CH$_3$), 1.04 (s, 3H, CH$_3$), 1.08 (s, 3H, CH$_3$), 1.36, 1.56-1.72 (2m, 21H), 1.87 (m, 2H), 2.41(m1H), 3.57 (ψt, 1H, J = 10 Hz), 3.83 (dd, 1H, J = 9, 10 Hz), 4.32 (dd, 1H, J = 6, 9 Hz), 4.61 (ψt, 1H, J = 5 Hz), 4.92 (m, 1H), 5.02 (d, 2H, J = 8 Hz), 5.08 (dd, 1H, J = 7, 2 Hz), 5.16 (d, 1H, J = 8 Hz), 5.30 (dd, 1H, J = 5, 6 Hz), 7.32-7.38 (m, 10 H), characteristic impurities 7.45 (t), 7.65 (dd), 7.95 (dd), 8.15 (s). MS (high resolution) found 781.3361 (calcd for C$_{42}$H$_{54}$O$_{12}$P [M+H]$^+$ 781.3353).

D-myo-Inositol 4-phosphate (1). To a solution of the crude fully protected phosphate 6 (31 mg) in ethanol : CH$_2$Cl$_2$ (1 : 0.4 mL) containing a few drops of acetic acid was added 10% Pd on C (20 mg) and the mixture was shaken on a Parr apparatus under an atmosphere of 50 PSIG H$_2$ for 24 h at 20 °C. The catalyst was removed by centrifugation and the solvent was removed *in vacuo*. To the residue was added 1.0 mL of 85% HOAc and the reaction was stirred for 24 h at 20 °C. The solvent was removed by repeated coevaporation with heptane. TLC of the residue indicated a single material (Rf = 0.43, 1-butanol : EtOH : H$_2$O, 5:4:1). This residue was dissolved in THF (1 mL) and 1M LiOH (1 mL) and stirred overnight at 20 °C. The solution was then acidified using 1M HCl and extracted with CH$_2$Cl$_2$ (7 X 2 mL). To make the cyclohexylammonium salt BIORAD AG 50W-X4, H$_2$O, 200-400 mesh resin was added to the sample and stirred for 10 min and then filtered. Cyclohexylamine (100 µL) was added to the solution and stirred for 10 min and then concentrated. The residue was then dissolved in a minimum amount of H$_2$O and acetone was added until the precipitation was complete. The 1H NMR spectrum was identical to that previously reported. MS (high resolution) found 259.0234 (calcd for C$_6$H$_{12}$O$_3$P$^-$ [M-H]$^-$ 259.0219).
D-myoinositol 6-phosphate. Treatment of alcohol 3a (20 mg, 0.038 mmol) exactly as described above provided D-myoinositol 6-phosphate (0.016 mmol, 41% yield from 3a by phosphate assay).

Acknowledgement

We are grateful to the Warner-Lambert Company and to the National Institute of Health (grant # DK44589-02) for financial support of this work. Mass spectra were obtained at the Harvard University Chemistry Department Mass Spectrometry Facility.

References

(5) In this communication we are using the stereospecific numbering system for myoinositol described by the International Union of Biochemistry: Eur. J. Biochem. 1989, 180, 485. By this system all myoinositol derivatives are named and numbered as D-myoinositols regardless of whether the substituents occupy the lowest numbered positions in the resulting name. For example, the enantiomer of D-myoinositol 1-phosphate is D-myoinositol 3-phosphate (not L-myoinositol 1-phosphate).
Kasei, Inc., Portland OR.) 1,1-dimethoxycyclohexane for
1-ethoxycyclohexene in the synthesis of 2. See also: Jiang, C.; Baker, D. C.

(10) The dimer shown, 5, incorporates two molecules of inositol diol 2 with the
same absolute configuration. It is also possible that the dimer formed in the the
presence of the racemic 2 incorporates two diols of opposite absolute
configuration. This possibility does not affect the rationalization suggested to
account for the observed regiochemistry of acylation and alkylation.

3478.

(Received in the USA 13 September 1993)