Tufts University  |  School of Arts and Sciences  |  School of Engineering  |  Find People  | 
   

Faculty & Research



Contact Info:
Department of Biology
Tufts University
200 Boston Ave., Suite 2600
Medford, MA 02155

Tel: 617.627.3924
Fax: 617.627.0909
Email Dr. Trimmer

Soft Robotics | IGERT site
Laboratory website
Publications
CV

Barry A. Trimmer
Professor, Henry Bromfield Pearson Professor of Natural Sciences
Director, Neuromechanics and Biomimetic Devices Laboratory

Graduate Research Area: Neurobiology

Research Interests

Dr. Trimmer is interested in the control of locomotion and the neural processes that organize sensory and motor information. He is the head of two integrated research labs — the Neuromechanics Laboratory uses an insect (the tobacco hornworm, Manduca sexta) as its primary model system because it has a brain with fewer neurons, many of which can be identified and kept alive outside the animal. The Biomimetic Devices Laboratory focuses on applying biological principles in the design, fabrication and control of new types of machines, including soft robots.

Currently we are pursuing two major projects:

Neuromechanics of Locomotion — Animal locomotion is an intricate interplay between neural processes and biomechanics. These components have co-evolved to form "neuromechanical" control systems in which neural commands organize actions and the structures and materials of the body translate these commands into movements. In some cases structures are able to accomplish movements with relatively little or no command input, but most behaviors in natural environments require intricate neural patterning. In animals that have stiff skeletons (such as vertebrates and adult stage arthropods), these motor programs rely on the constraints imposed by joints to reduce the degrees of freedom and simplify control. In contrast to animals with skeletons, soft animals do not have the same limits on movements; they can deform in complex ways and have virtually unlimited degrees of freedom. One of our major research goals is to identify how soft animals control their movements in a computationally efficient manner using the principles of embodiment and morphological computation.


Neuromechanical control systems
The control mechanisms needed to move soft animals and robots are largely unknown.

Studying the forces, movements and neural commands in soft animals can help to identify effective control strategies.

Computational simulation techniques can also be used to "evolve" control systems for soft 3-dimensional structures.

These experimental and simulation approaches are expected to offer new computational paradigms for engineering structures and controls for soft robots.

Tissue Engineering of Novel Devices — One of our long-term goals is to "grow" robotic devices using a combination of biosynthetic materials, cellular modulation, and tissue engineering. In collaboration with Professors Kaplan and Levin we are exploring both invertebrate and vertebrate cell culture and regeneration systems to structure muscles and supporting tissues on scaffolds of biomaterials. These scaffolds could be degradable or allowed to remain as part of an operational biorobot. Such biological devices will be controlled using the simulation tools developed for synthetic soft robots and will exploit recent advances in soft material electronics.

For these cell-based systems, we are generating bundles of contractile skeletal muscle tissue using insect muscle cells. These constructs will be engineered to contract in a controlled, coordinated fashion for eventual use as motors in soft robots. Insect cells offer novel features, such as high force, low oxygen demand, and low sterility requirements that are particularly advantageous.


Biosynthetic robots
Growing robotic devices: A completely new approach to building machines
The goal is to harness the intrinsic structure-building capability of cells.
The approach is to make biopolymer scaffolds with signaling molecules that direct cells into the desired shapes and functions.

Hybrid devices grown on conducting substrates can be connected to implanted microchips for autonomous or remote teleoperation.

These devices will be cheap, mostly biodegradable and biocompatible for use in medical and environmental applications.
Courses

Biology 134: Neurobiology
Biology 49: Experiments in Physiology
Electrical Engineering 100: Design of Medical Instrumentation
 

< back to list of Faculty & Research