Tuesday and Thursdays, 3:00 – 4:15 (J+), Olin 006

Instructor:
Colin Orians: colin.orians@tufts.edu | Barnum 101B | x7-3543 | office hours: T 12:30 – 2:30 or by appointment

Field instructors:
Colin Orians
Andres Vega: avegak440@gmail.com
Charles van Rees: Charles.Van_Rees@tufts.edu
Francie Chew: fchew@tufts.edu
Elizabeth Crone: Elizabeth.crone@tufts.edu

Prerequisites:
Biology 14 or equivalent and consent. Preference is given to students with prior background in ecology and conservation biology. (Note: this is a HIGH DEMAND that requires an application to be completed in the April prior to the course offering the following fall).

Course Description:
Tropical systems are diverse, have many unique features when compared to temperate systems, and are threatened by human activities. This seminar and trip to Costa Rica is designed to provide students with an in depth understanding of tropical ecology and conservation and to give students first-hand field research experience. During the fall semester, students will, in addition to weekly readings and discussions, give oral presentations and complete various writing assignments, including a research proposal. Over winter break we travel to Costa Rica to carry out the proposed research and to learn first-hand about conservation challenges and successes.

Course Objectives:
1) Study the ecology and conservation of the terrestrial tropics
2) Develop your scientific skills: Learn to generate hypotheses, design experiments, write a compelling research proposal, and present your results to your peers
3) Refine oral and written communication skills
4) Gain first-hand research experience

Description of assignments:
• Discussion Leader: Student teams will lead a discussion once during the semester. You should plan on using no more than 1 hour of the 1:15 minute class period.
• Reading Reflections: For dates where readings are required, you are expected to post your thoughts on that reading 24 hours in advance of class. Tell us what surprised you and what you would want to study next.
• Topic Presentations: In teams of 2, students will give a 30-minute presentation (20 minutes presentation + 10 minutes for questions). In addition you are required to provide a reading for the class to read in advance. In class you will give an overview of 1) the general problem, 2) the science behind the problem, and 3) the human dimension. At the time of your
presentation, you must provide a **handout** (key points and references cited) and turn in an **annotated bibliography** for six of your sources.

- **Research Proposal & Presentation**: In teams of 2, students will propose a **comparative research project** that can be done at the La Selva Biological Station and at Corcovado National Park (see suggested topics below). This proposal is not a contract. You are likely to modify the project once you have had a chance to see the sites first-hand. (Please consult the **handout** for further instructions.)

- **Op-Ed article**: As scientists we also need to learn to communicate our science to the general public. How do you convince the public to care enough to take action? You will each write an op-ed on a topic of your choice.

- **Research Report and Presentation in Costa Rica**: We will travel to the Atlantic lowlands (La Selva Biological Station), Pacific lowlands (Sirena-Corcovado National Park) and to the highlands (Copey de Dota). At the two lowland locations you will complete and present your independent **research project**. At the highland site you will write your final report and visit local farms.

- **Participation**: This is a seminar and thus its success depends upon class participation. Thus, you are expected to express your thoughts and ideas throughout the class.

Summary of Assignments and Grading:

- Discussion leader ... 10%
- Reading Reflections ... 10%
- Topic Presentation ... 15%
- Research Proposal & Presentation .. 25%
- Op-Ed article .. 10%
- Research Reports & Presentations (in Costa Rica) 25%
- Participation ... 5%

*late assignments are penalized a half-letter grade per day

Course Text and Materials:

- All other readings provided in PDF format at least one week prior to class on TRUNK.

Academic Conduct:

Academic integrity, including avoiding plagiarism, is critically important. Each student is responsible for being familiar with the standards and policies outlined in the Tufts University [Academic Integrity Handbook](#). Moreover, it is the responsibility of the student to be aware of, and comply with, these policies and standards. In accordance with Tufts University’s policy on academic misconduct, violations of standards of academic conduct will be sanctioned by penalties ranging from grade reduction or failure on an assignment; grade reduction or failure of a course; up to dismissal from the school, depending on the nature and context of any infraction.
Course & Assignment Schedule (to be adapted as necessary):

<table>
<thead>
<tr>
<th>Class</th>
<th>Date</th>
<th>Topic</th>
<th>Required Work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(see Trunk for other readings)</td>
</tr>
<tr>
<td>1 T</td>
<td>Sept 8</td>
<td>Introduction to course and to biomes of Costa Rica. What is science? Developing Hypotheses in Science</td>
<td>Discussion of chpts 1, 2, 5, 6, 9-11, and 15 in Forsyth & Miyata’s Tropical Nature</td>
</tr>
<tr>
<td>2 Th</td>
<td>10</td>
<td>Tropical Biodiversity</td>
<td></td>
</tr>
<tr>
<td>3 T</td>
<td>Sept 15</td>
<td>Tropical Nature cont.</td>
<td>Book + 3 hypotheses and discussion</td>
</tr>
<tr>
<td>4 Th</td>
<td>17</td>
<td>Seasonality and Resource Limitation (D)</td>
<td></td>
</tr>
<tr>
<td>5 T</td>
<td>Sept 22</td>
<td>Plants: Consequences of Resource Limitation (D)</td>
<td></td>
</tr>
<tr>
<td>6 Th</td>
<td>24</td>
<td>Plant Adaptations (D)</td>
<td></td>
</tr>
<tr>
<td>7 T</td>
<td>Sept 29</td>
<td>Animals: Resource limitation and fluctuation (D)</td>
<td>Meet in ERC room in Tisch Library</td>
</tr>
<tr>
<td>8 Th</td>
<td>Oct 1</td>
<td>Tisch Library Session</td>
<td></td>
</tr>
<tr>
<td>9 T</td>
<td>Oct 6</td>
<td>Animals: Why do we care? (D)</td>
<td></td>
</tr>
<tr>
<td>10 Th</td>
<td>8</td>
<td>Why Mountains are higher in the Tropics: Implications for Conservation (D)</td>
<td></td>
</tr>
<tr>
<td>11 T</td>
<td>Oct 13</td>
<td>Research Proposal: Paper presentations</td>
<td>10 minute presentation by each team</td>
</tr>
<tr>
<td>12 Th</td>
<td>15</td>
<td>Topic Presentation 1. Resilience to climate variability Team presentations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Topic Presentation 2. Consequences of climate change to conservation</td>
<td></td>
</tr>
<tr>
<td>13 T</td>
<td>Oct 20</td>
<td>Costa Rican Biodiversity</td>
<td>Guest Lecture: Andres Vega</td>
</tr>
<tr>
<td>14 Th</td>
<td>22</td>
<td>Topic Presentation 3. Deforestation: Consequences to climate Team presentations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Topic Presentation 4. Deforestation: Consequences for Extinction</td>
<td></td>
</tr>
<tr>
<td>15 T</td>
<td>Oct 27</td>
<td>Research Proposal: Hypothesis, Rationale & Methods</td>
<td>Peer Review</td>
</tr>
<tr>
<td>16 Th</td>
<td>Oct 29</td>
<td>Topic Presentation 5. Marine Parks: do they really help protect fisheries? Team presentations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Topic Presentation 6. Marine Parks: how do you get public buy in?</td>
<td></td>
</tr>
<tr>
<td>17 T</td>
<td>Nov 3</td>
<td>Sustainable Agriculture Agriculture: Traditional vs. Intensified (D)</td>
<td></td>
</tr>
<tr>
<td>18 Th</td>
<td>5</td>
<td>Topic Presentation 7. Technological solutions to rainforest conservation Team presentations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Topic Presentation 8. Wildlife friendly agriculture (does it exist?)</td>
<td></td>
</tr>
</tbody>
</table>
Possible Research Topics that focus on seasonality or nutrients
(Topics in bold and example questions below)

Below are some general ideas (a list of previous projects is posted to TRUNK)

- **Biodiversity of plant types (shrubs, vines, epiphytes, bromeliads, ant plants, trees with buttresses, etc.)**

 e.g., Are understory shrubs more dominant at one location or the other? Does the ratio of epiphytes to vines differ?

 Is the density of high alkaloid sap trees different and how does this affect patterns of herbivory?

- **Biodiversity of animals (ants, wasps, moths, herbivores, spiders, soil invertebrates, herps, insectivorous birds, etc.)**

 e.g., Does seasonality affect patterns of herbivory/herbivore abundance? Does predator abundance follow a similar pattern?

 Is the composition of wasps and other predators similar at the two sites?

 Does the abundance of herps differ in abandoned cacao plantations at the two sites and how does this differ from the adjacent forest?

- **Frequency of stress adaptations in plants (thick succulent leaves, long-lived leaves, drip tips, sunken stomata, bark that repels vines, wood anatomy, etc.)**

 e.g., Are thick (or succulent) leaves more common at either site?

- **Behavioral ecology**

 e.g., Does resource limitation influence interactions among ant species? Are ants at resource-limited sites more omnivorous?

 How do baits differ in their attractiveness to flies, butterflies, rodents, etc. between the two sites?

 How do the foraging activities of vertebrates differ at the two sites?
• **Plant-animal interactions**
 e.g., Are hummingbirds or hummingbird-pollinated plants less common at either site?
 Does the availability of nectar resources differ and does this correlate with the abundance of nectar feeding ants? Are ant-plant mutualisms more common at one site?

• **Plant defense strategies**
 e.g., Are leaves/plants more heavily defended at La Selva or Sirena? Do juvenile trees suffer more damage at one site?

To develop an idea above or come up with your own you could consult one of the books below or browse a recent issue of *Biotropica, Journal of Tropical Ecology* or other ecological journals:

