
Designing ScratchJr: Support for Early Childhood
Learning Through Computer Programming

Louise P. Flannery
Tufts University

105 College Ave.
Medford, MA 02155

louise.flannery@tufts.edu

Elizabeth R. Kazakoff
Tufts University

105 College Ave.
Medford, MA 02155

elizabeth.kazakoff@tufts.edu

Paula Bontá
Playful Invention Company

Montreal, Canada
bonta@media.mit.edu

Brian Silverman
Playful Invention Company

Montreal, Canada
bss@media.mit.edu

Marina Umaschi Bers
Tufts University

105 College Ave.
Medford, MA 02155

marina.bers@tufts.edu

Mitchel Resnick
MIT Media Lab
75 Amherst St.

Cambridge, MA 02139
mres@media.mit.edu

ABSTRACT
ScratchJr is a graphical programming language based on
Scratch and redesigned for the unique developmental and
learning needs of children in kindergarten to second grade.
The creation of ScratchJr addresses the relative lack of pow-
erful technologies for digital creation and computer pro-
gramming in early childhood education. ScratchJr will pro-
vide software for children to create interactive, animated
stories as well as curricula and online resources to support
adoption by educators. This paper describes the goals and
challenges of creating a developmentally appropriate pro-
gramming tool for children ages 5-7 and presents the path
from guiding principles and studies with young children to
current ScratchJr designs and plans for future work.

Categories and Subject Descriptors
D.1.7 [Programming Techniques]: Visual Programming;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—User-centered design

General Terms
Design, Human Factors, Languages, Theory

Keywords
Graphical Programming, Early Childhood, Education, STEM

1. INTRODUCTION
As digital creation tool increase in prevalence, early child-

hood education remains an area in which few educational
technologies focus on digital creation or high-level thinking.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
IDC ’13, June 24-27, 2013 New York, NY, USA
Copyright 2013 ACM 978-1-4503-1918-8/13/06 $15.00.

Most computer programming tools target children at least 7-
8 years old, but typically older. The plethora of mobile apps,
software, and stand-alone technologies intended for younger
children tend to focus on basic academic skills, such as recog-
nition of letters and numbers, rather than content creation
or high-level thinking. The ScratchJr project rests on the
premise that children in kindergarten to second grade can in-
deed learn and apply concepts of programming and problem-
solving to create interactive animations and stories. Needed
to do so are powerful educational technologies and learning
supports tailored for early childhood. Technical and curric-
ular designs must be rooted in developmentally appropriate
teaching practices sensitive to children’s social, emotional,
physical, and cognitive development [9].

Given the recent emphasis on the academic content of
early childhood programs [18] and the importance of play
in developmental and learning trajectories [9], digital tech-
nologies such as computer programming tools can bridge
academic content with playful and meaningful activities [5].
Previous research has shown that children as young as four
years old can understand basic computer programming con-
cepts and can build and program simple robotics projects [3]
[4] [6] [22]. Furthermore, early studies with the text-based
Logo tools have shown that programming, when introduced
in a structured way, can help young children with a variety
of cognitive skills, including basic number sense, language
skills, and visual memory [7]. The ScratchJr project de-
scribed in this paper is designed to promote early child-
hood learning outcomes in well-established academic do-
mains, such as literacy and mathematics, while also intro-
ducing children to computer programming and reinforcing
problem-solving and foundational cognitive skills.

Three elements will comprise the ScratchJr project: 1)
software designed with a developmentally appropriate inter-
face and methods of interaction, 2) accompanying curricu-
lar materials as well as embedded opportunities to practice
math and literacy content and other cognitive skills; and
3) an online community with resources for early childhood
educators. This paper describes the educational goals and
design principles of the ScratchJr project, prototype designs,
and preliminary findings from research on children’s use of
ScratchJr. Foremost, this paper introduces the ScratchJr
programming language and the story of its creation.

1

Full Papers IDC 2013, New York, NY, USA

2. BACKGROUND

2.1 Design Challenges
The early days of personal computing saw lively debate

over the developmental appropriateness of technology in early
elementary classrooms [8] [10]. Today, however, essential
questions have shifted toward which digital tools to intro-
duce and how to ensure that technology use supports and is
supported by the broader curriculum [17]. Of course, com-
puter programming may be difficult for novices of any age,
and varied supports have been designed to facilitate this
stage of learning programming [2] [14] [16] [19]. The devel-
opmental needs and capabilities of young children in partic-
ular pose additional design parameters [20].

Many salient issues influence the design of a programming
environment for five to seven year old children. The strict
syntax of text-based computer languages, such as Logo, can
be unintuitive or frustrating for novice programmers. Graph-
ical programming environments may simplify syntax difficul-
ties but are often text-heavy, posing another challenge for
pre- and early-readers. Hand-eye coordination and fine mo-
tor skills for controlling a mouse or touchpad to click and
drag small elements around the screen can also impede ef-
fective use of software [13]. Beyond the technical aspects
of reading and dexterity, young children’s cognitive traits at
different ages - or stages - follow patterns which vary sig-
nificantly from those of older children and adults, beyond
the scope of their knowledge [11] [12]. Self-regulation, sys-
tematic reasoning, working memory, and other, particularly
high-level, thinking skills are still under development and
change dramatically between ages five and seven [15].

2.2 Prior Solutions
Young children are intrigued by creating behaviors for an-

imated characters but challenged by age inappropriate tools.
A number of strategies have been attempted to resolve this
disparity. Adults may sit with young children and give
click-by-click instructions, although this scenario may pose
both expected and counter-intuitive challenges for children’s
learning [1]. Simpler and more structured programming lan-
guages, such as ROBOLABTM’s PILOT level, or the Daisy
the Dinosaur app aim to reduce difficult concepts for begin-
ners. Other tools, such as the Bee-Bot or Cubelets robots
or the ToonTastic animation app, preclude the need for
programmatic scripts to create behaviors. These fascinat-
ing tools engage young children playfully with technology.
However, their simplifications obscure important aspects of
creative programming, such as sequencing a visible set of
instructions, forming a program’s flow-of-control which can
then be evaluated and revised to produce a specific outcome.

Scratch, a free and widely used graphical programming
language, was designed to make sophisticated programming
accessible to children as young as eight and to people of
all ages interested in a non-traditional entry to digital cre-
ation through programming. With Scratch, users program
interactive art, stories, animations, simulations, and games
by snapping together sequences of graphical blocks which
represent instructions. Additional non-programmatic tools,
such as a paint-editor and buttons for choosing and manipu-
lating graphics and audio, round out the Scratch toolbox. In
using Scratch, children learn core literacy and mathematical
concepts in addition to valuable problem-solving skills [21].

As with most technologies designed to expand youth ac-

cess to programming tools and knowledge, Scratch is not
intended for children as young as five. The instruction set
is large, relies on many complex concepts, and text labels,
all barriers for young children to learn and use the inter-
face. Many instructions rely on concepts children will not
encounter or readily grasp until they are much older. Even
for intuitive instructions such as “Move # Steps” or “Ro-
tate #,” unfamiliar units of measurement such as pixels or
degrees are not easily or meaningfully learned by young chil-
dren. Programmatically moving Scratch characters requires
understanding of the Cartesian coordinate system, positive
and negative numbers, and the relative size of numbers up to
at least +/- 500. Expected only of older children and adults,
the interface design’s reliance on these concepts impedes
young children’s attempts to use Scratch. The implementa-
tion of some Scratch features and instructions also pose de-
velopmentally inappropriate challenges for young children,
such as the lack of visible outcomes for many programming
blocks or combinations of instructions. Other examples will
be discussed in Section 4.1.2, on study findings.

Scratch has been a powerful and popular tool for intro-
ducing older children, teens, and adults to creative compu-
tation. Young children are equally interested in creating
digital characters and stories and could benefit from doing
so through programming. When presented with carefully
designed tools and curricula, programming can be part of
the growing set of digital creation tools for young children.
Based on its history and popularity, Scratch is an excellent
starting point for designing such a tool.

3. THE DESIGN OF SCRATCHJR

3.1 Developmentally Appropriate Design
The ScratchJr programming software currently in devel-

opment by the authors is based on Scratch and intended
for use by children in kindergarten through second grade
(ages five to seven). This project aims to show how, given
an environment designed for their developmental and learn-
ing needs, young children can reap many benefits from pro-
gramming. The following principles guide the design of
ScratchJr’s features and affordances as a tool for young chil-
dren to learn in many ways through programmatically cre-
ating interactive and animated stories. The implementation
of each principle rests on translating developmentally ap-
propriate expectations for the range of physical, cognitive,
linguistic, and social-emotional traits among early elemen-
tary children into design features of the software to support
learning and programming.

Low Floor and (Appropriately) High Ceiling Make it
easy to get started with ScratchJr programming. Pro-
vide room to grow with concepts varying in complexity,
but keep the tool manageable for the range of users.

Wide Walls Allow many pathways and styles of exploration,
creation, and learning.

Tinkerability Make it easy to incrementally build up cre-
ations and knowledge by experimenting with new ideas
and features.

Conviviality Make the interface feel friendly, joyful, invit-
ing, and playful, with a positive spirit of exploration
and learning.

2

Full Papers IDC 2013, New York, NY, USA

Classroom Support Foster use in the classroom context
and a wide range of learning outcomes though:

• Feasible management of use in classroom settings

• Support for building foundational knowledge which un-
derlies multiple disciplines, such as sequencing, pat-
terning, and iteration

• Support for discipline-specific knowledge from math,
literacy, and classroom-selected curricula

• Support for problem-solving strategies and skills

• Complementary curricula and suggested teaching prac-
tices co-designed with early childhood teachers

3.2 Overview of ScratchJr
The ScratchJr software is comprised of a user’s library

of projects, a main project editor (Figure 1), and tools for
selecting and drawing character and setting graphics. At
the center of the project editor lies the story page, the scene
under construction. New characters, text, and settings can
be added by clicking large buttons labeled with icons: a cat
silhouette, the letter A, and a mountain range, respectively.
Up to four pages (thumbnails of which appear on the right-
hand side) can be created and played in sequence as multi-
scene stories. The set of characters included on each page is
managed from the list to the left of the story page.

The blue palette of programming instructions lies along
the center of the editor. Children display one instruction
category at a time by clicking selectors on the left. Drag-
ging instruction blocks from the palette into the scripting
area below activates them. Snapping blocks together here
creates programs that are read and played from left to right.
The grid overlaid on the page provides a concrete, countable
unit of measurement for characters’ actions. It can be tog-
gled on and off, as is most helpful to a given purpose, e.g.
programming vs. presenting a project. The “Green Flag”
(“Play”) and red “Stop” buttons respectively start and inter-
rupt the programmed animation. The page and the scripting
area are seen as the most important parts of the activity and
are visually emphasized through size, position, and color.

Both general and fine-grain details of the interface have
been shaped by observations of children using Scratch and
ScratchJr prototypes in small and large groups. The next
section presents these studies and key observations made

Figure 1: The main ScratchJr project editor.

throughout. These findings, along with the principles for
developmentally appropriate design noted in Section 3.1,
guided the design decisions discussed in Section 5.

4. RESEARCH STUDIES
Over the course of four research and development phases,

the ScratchJr project aims to provide a graphical program-
ming language for children in grades K-2, with curriculum
materials and online resources for early childhood educa-
tors. The first phase provided baseline observations of young
children using Scratch and teachers’ thoughts on designing
ScratchJr. An initial ScratchJr prototype was piloted along
with supporting curriculum materials. During Phase 2, ex-
tensive data and observations of children’s use of a revised
ScratchJr tool are being collected in five classrooms. Unless
otherwise stated, the observations noted refer to patterns
seen among the vast majority of the children in each sample.
These trends have informed further revisions to the software
and curriculum. Detailed analysis of learning outcomes is
ongoing; this section focuses on children’s responses to the
interface design at a higher level. Phase 3 will involve imple-
mentation in wider-spread classrooms and the introduction
of an online resource community for teachers. After further
revisions based on new findings, Phase 4 will see the public
release of the software, curriculum, and online resources.

4.1 Phase 1: Baselines and Prototyping

4.1.1 Methods
Phase 1 research involved collecting baseline data on young

children’s use of Scratch (v1.4) and designing the initial
ScratchJr prototype. In earlier work, Scratch use was stud-
ied with students (grades K-6) in a summer enrichment pro-
gram. Groups of 15 children worked with 3 research as-
sistants to complete an introductory curriculum and final
project over five half-days. The nearly universal intrigue
with creating animations and striking age-related differences
in Scratch features learned led to follow-up studies.

More focused baseline data was collected from children
and early childhood teachers. Approximately 40 children in
grades K-2 worked in groups of 4 over four half-hour sessions
to learn basic Scratch concepts and skills. About 30 of these
children completed four additional half-hour sessions to ap-
ply and demonstrate their Scratch knowledge in a project.
Nine pre-service teachers enrolled in a technology curriculum
development course designed and led the projects. ScratchJr
researchers documented observations of the children’s use of
Scratch and reactions to the curricula throughout.

Focus groups held with teachers rounded out the obser-
vations and recommendations collected prior to designing
the ScratchJr interface and curriculum. After local teachers
in the baseline data collection classrooms attended a work-
shop on Scratch and observed their students during the pi-
lot studies just described, they made recommendations on
ScratchJr features. In addition, non-local teachers who had
used Scratch in their early elementary classrooms were con-
tacted via the ScratchEd website and interviewed.

The final step of Phase 1, a ScratchJr prototype was im-
plemented and evaluated in two pilot tests. First, 18 of the
children in the baseline study children (ages 5-7), learned
ScratchJr over three to four half-hour sessions. The sec-
ond pilot, run as a summer enrichment program, involved 5
children and also tested a new ten-hour curriculum.

3

Full Papers IDC 2013, New York, NY, USA

4.1.2 Findings
In conjunction with design principles, pilot work with the

existing Scratch software allowed the identification of core
elements and designs that ScratchJr should afford or avoid.
For instance, in the pilot study, second graders had an easier
time learning to find Scratch blocks based on their text labels
than kindergartners or first graders, but literacy remained
a barrier to developing proficiency with Scratch for most
K-2 children. Systematically exploring the effect of numeri-
cal parameters on movement instructions was predicated on
concepts not introduced until later elementary school: the
Cartesian coordinate system, negative numbers, and relative
size of numbers up to 500 or more. Skills ranging from un-
derstanding units of measurement to navigating hundreds of
blocks to predicting the net result of a series of actions were
beyond the grasp of kindergarten, first, and second grade
students in the context of Scratch.

Some programming concepts - those with visible and in-
tuitive outcomes - were accessible to these younger children.
However, many Scratch instructions, either by themselves
or when run in common groupings, do not have a visible
outcome. This lack of feedback made it difficult for chil-
dren to build associations between the instructions in their
scripts and the actions that resulted. Furthermore, the fairly
low-level instructions require the programmer to decompose
an intended outcome into several levels of sub-components,
whereas young children would succeed better if instructions
and project components were fairly high-level and required
fewer levels of decomposition of their goal.

While the open-ended possibilities of Scratch projects gar-
nered children’s attention at a high level, some functions’
relatively unbounded designs proved distracting or confusing
for young children, who explore and reason differently than
older children. For instance, Scratch blocks allow number
parameters dozens of digits long. Some children were drawn
toward typing exceedingly large parameter values and away
from the more rigorous task of determining a value to result
in the originally desired action. This initially delightful foray
tended to produce outcomes that children could not read-
ily debug because of the size of the numbers involved and
the nature of the tools to reset a project’s state. Similarly,
many children were drawn away from interest in creating
a particular scene in favor of clicking blocks or tools that
provided instant feedback but were not typically relevant
to their goal. Young children who filled their screens with
hundreds of characters with repeated clicks of the “mystery
sprite” button neglected to then build behaviors for any of
these characters. In spite of varied challenges, children were
enthusiastic about the prospect of influencing the appear-
ance and behavior of on-screen characters. The thrill of the
instances in which they were able to do so demonstrated the
niche that a program like Scratch could fill, if appropriately
designed for use by children in grades K-2.

Tests of the initial ScratchJr prototypes found that many
children made substantially more progress towards mean-
ingful tinkering, learning of the software, and creation of
mini-projects than they had with Scratch. For instance, the
youngest (kindergartners) children, who primarily used the
paint editor or filled their screens with random characters
in Scratch, explored concrete ScratchJr programming func-
tions (movement, appearance changes, sounds). Older (sec-
ond grade) children learned enough to make sophisticated
animated scenes in ScratchJr as year-end projects.

To ensure the software’s appropriateness to the full range
of children in K-2, some prototype features required further
adaptation. It became clear that programming actions must
not only have a visible output but also take time to run.
This better facilitates exploratory learning of programming
instructions’ actions and supports children’s perception of
the role each action has in a program. During the sum-
mer ScratchJr sessions, a curriculum based on group and
individual work with “ScratchJr Cards” to introduce core
programming concepts and apply them in a semi-structured
project was effective for that group of kindergarten and first
grade children. A number of strategies were identified to
support a wider range of children in managing the problem-
solving process as they worked through each activity. From
the interface color scheme to intuitive icon designs to the
instruction set and its categorization, the two pilot tests
provided rich feedback for further revisions to the software
and curriculum in preparation for testing in full-sized and
diverse classrooms.

4.2 Phase 2: Prototype Refinement

4.2.1 Methods
Phase 2 of the project, currently ongoing, focuses on the

refinement of the ScratchJr prototype and the full intro-
ductory curriculum. The work takes place in five class-
rooms at two local schools: three kindergarten classes at
one and a kindergarten and a combined 1st/2nd grade class-
room at the other. The 100 children in the sample come
from diverse cultural, language, and socioeconomic back-
grounds; some receive special services in school. Four of
the five classrooms have completed at least 9 sessions with
a researcher-as-teacher, 1-2 research assistants, and up to
3 regular classroom teachers and assistants. Sessions last
30 to 60 minutes, depending on the needs of each classroom.
Activities included introduction and demonstration of a new
concept, group solving of a related programming challenge,
and independent solving of the challenge, supported by a
ScratchJr Card. In-class data was collected in the form of
children’s finished ScratchJr projects and video, audio, and
screen-capture footage of each child at work.

Staggered introduction of the ScratchJr activities to the
kindergarten classes at one school allows control-group com-
parison on pre- and post-curriculum assessments of founda-
tional literacy knowledge. Baseline assessments of math and
reasoning, collected at the other school, will inform future
analysis of children’s use of embedded math concepts and
problem-solving strategies across grades. A revised curricu-
lum will be tested next in a classroom where no ScratchJr
activities have taken place. The other classrooms will also
use the new curriculum format as they continue with activ-
ities on new programming concepts as well as tasks focused
to highlight math and problem-solving skills. The classroom
teachers, who are now familiar with ScratchJr, will become
collaborators in redesigning, extending, and implementing
the sequence of lessons and projects for their own classes.

Researchers are in the midst of documenting learning tra-
jectories related to the interface and programming concepts
as well as the use of foundational, discipline-specific, and
problem-solving related knowledge and skills. The nature of
the ScratchJr software requires some of these skills, while
other skills are targeted by activities and projects; supports
are designed in both the software and curriculum. Along

4

Full Papers IDC 2013, New York, NY, USA

Figure 2: Kindergartners focused on different aspects of their projects: (Left) practicing new skills, in this
case programming each of 11 characters identically, or (Right) creating their own graphics and refining
programmed outcomes.

with further feedback from teachers and children, this on-
going analysis will inform further curriculum and prototype
design revisions for use and re-evaluation during Phase 3.

4.2.2 Findings
These findings represent preliminary analysis of data col-

lected during the first half of Phase 2. In four classrooms
introduced to ScratchJr, children enthusiastically explored,
programmed, and created animated scenes. Children were
often on task with the curriculum, open explorations, and
self-selected projects for 30-45 minutes, depending on inter-
est and ability to work in a large group format. Off-task be-
haviors paralleled some seen with young children’s Scratch
work but proved less detrimental to goal completion. Chil-
dren still spent extra time using the paint editor or adding
characters they did not intend to program. In ScratchJr,
though, these activities served to motivate rather than over-
take the projects. Adults were primarily called upon to share
exciting outcomes or help with non-obvious tasks such as
deleting a character, spelling, technical issues, debugging,
and higher-level management of approaching an activity. At
this point, children have learned best how to:

• Find different categories of blocks

• Drag blocks to the scripting area and connect blocks
to make a program

• Select characters and settings

• Edit or draw new characters and settings

• Add new pages

• Play their programs using the Green Flag Play button

• Use the Motion, Sound, and some Looks instructions
to accomplish specific and general outcomes

• Use the End or Repeat Forever programming instruc-
tions to accomplish specific outcomes

• Explore unfamiliar blocks representing concrete and
visible actions, to learn what they do

• Save their work and open new or existing projects.

Grade level differences in learning ScratchJr existed in the
quantity of programming concepts and blocks learned over
the same time period and in the complexity of concepts that
were accessible. First and second graders tended to learn
how to navigate the interface quicker than the kindergart-
ners, allowing them to focus more on programming. As-
pects of using ScratchJr which many children, particularly
the kindergartners, have found challenging to learn in the
context of the existing curricular activities include:

• Determining the specific function of some of the more
sophisticated instructions, particularly meta-level in-
structions, which have no immediate visible outcome
when run by themselves or in arbitrary combinations

• Understanding how to switch among several characters
and program each one

• Coordinating multiple scripts within one character or
across multiple characters

• Determining numeric parameter values to meet a goal

• Deleting unwanted characters (this was purposely made
difficult at the time to avoid accidental deletions)

• Acquiring a common vocabulary of interface elements

• When stuck, choosing a problem-solving strategy that
allows continued work on the task.

These observations are informing new revisions to the soft-
ware and curricular approach. Children in any class repre-
sent a wide range of abilities that are useful in ScratchJr,
from writing, icon recognition, and number sense to task
management and flexible thinking. Providing differentiated
or more scaffolded curricular activities will better ensure
all children in grades K-2 an accessible entry point into
ScratchJr programming.

4.3 ScratchJr in Action
This section presents examples of students’ work from

both self-directed and assigned activities to illustrate how
children in the sample thought about and used ScratchJr
after only a few sessions.

5

Full Papers IDC 2013, New York, NY, USA

Figure 3: (Left) A kindergartner uses Motion blocks to recreate “Froggy Plays Basketball.” (Right) A first
grader uses speech bubbles and “Messages” to enact conversations from “Let’s Say Hi to Friends Who Fly!”

Figure 2 shows examples of the range of project compo-
nents that many kindergartners explored. In an introduc-
tory lesson on basic motions, the kindergartner who made
the bustling city street scene (Figure 2; left) familiarized
himself with new concepts as young children often do: by it-
erating on them over and over. In addition to programming
an airplane to fly across the page, the assigned task, this
child practiced adding characters and programming move-
ment with eight individual cars, a school bus, and a girl on
the sidewalk. He also discovered that moving characters a
distance equal to the full grid width wraps them around the
edges of the page and returns them to their starting points.

The pair of kindergartners who collaborated on a story
about visiting a friend (Figure 2; right) devoted particu-
lar energy to drawing their own setting for the scene and
producing specific outcomes through the characters’ scripts.
Their project includes a setting with each girl’s house, drawn
with rectangle, circle, and color tools. The two characters
are programmed with the motions of walking down the street
and greeting a guest. This required finding out how far to
move the right-hand character to arrive precisely at the other
house. The girls also added an instruction for this character
to jump up and down in excitement over seeing her friend.
The other character’s script (unseen) mimics the motion of
an elevator. Also visible on the right-hand side of the screen-
shot is a second story page, a scene of the visit itself. This
project not only makes use of the programming concepts
learned through structured lessons; it also relies on the chil-
dren’s ability to decompose a situation and map the story
components to ScratchJr elements.

Following three to four introductory activities during which
children explored and practiced core programming concepts
and ScratchJr features, each classroom took on a unique
project tying in other content under study, such as social
studies or literature topics. The projects in several class-
rooms, including children in grades K-2, centered around
children’s authors being studied at the time. Students picked
one or more story from which to retell a key scene or a
beginning-middle-end sequence. These projects reinforce
the composition and narrative flow of stories. Here are two
examples comparing the complexity seen in the projects of
children at different grade levels.

One kindergarten classroom made four-page ScratchJr sto-
ries depicting a day in the life of Jonathan London’s“Froggy.”

In the story shown Figure 3 (left), Froggy “goes to space,”
“was little” and grows up, “goes swimming,” and “plays bas-
ketball.” The last of these scenarios is shown: the ball is
programmed to travel up and into the child-drawn basket-
ball hoop. The child who made this project pulls together
multiple books to create his own narrative, although the se-
quencing does not follow a conventional chronological order
of events. Projects also allow children to demonstrate the
concepts they have learned comfortably enough to apply in
a novel context. In this case, the characters are programmed
with mostly motion instructions and the scripts make correct
use the basic Start and End blocks that had been introduced.

Students in the study’s mixed-age class (grades one and
two) tended to create more complex projects given a simi-
lar task: retelling a chosen scene or story by the author Mo
Willems. They programmed not only with motions, which
were used in roughly half the stories, but also with instruc-
tions that are more challenging use or understand, from text
to control flow. They also almost universally programmed
and coordinated multiple characters. These features were
much less common for kindergartners to implement without
assistance.

Several of the most advanced students in this class used
“Messages,” a pair of instructions akin to procedure calls
which make characters to carry out actions in turns rather
than simultaneously. While about half the first and second
graders used speech bubbles in their retellings, several com-
bined speech bubble instructions with “Messages” to create
alternating dialogue between characters. Several children
also used multiple pages to illustrate the progress of the
story, doing so in a more connected way than was typical
of kindergarten stories. Figure 3 (right) shows a project
with many of these observed trends. The cat on the first
page (shown) says, “Hi” and the bird, whose program is
unseen, will then reply and fly around the field, singing.
The second and third pages present similar conversations
with new characters, mirroring the flow of the original book.
Equipped with more developed memories and reasoning abil-
ities, the first and second graders had mastered basic navi-
gation and programming concepts more quickly than kinder-
gartners and had the time and cognitive resources to learn
and apply more advanced concepts such as those described
in this example.

6

Full Papers IDC 2013, New York, NY, USA

4.4 Remaining Research
Many of the findings from the completed portion of Phase

2 studies have provided a sense of the timeline and sup-
ports that facilitate learning for children at different ages
as they explore the range of ScratchJr tools. Upon comple-
tion of upcoming Phase 2 studies to test a curriculum with
more built-in scaffolding and a variety of interface varia-
tions based on children’s responses to the initial prototype
designs, extensive analysis of the data collected throughout
will add to the high-level findings presented here. Phase 3
will expand the pool of collaborating classrooms so data and
feedback from educators and researchers in a wide range of
classrooms can inform software prototype and curriculum
revisions that best ensure that the designs are broadly suc-
cessful. An online resource forum will also be piloted, eval-
uated, and revised. Following analysis of Phase 3 studies
and final revisions to the software, curriculum, and online
tools, these three components comprising ScratchJr will be
released for public use, Phase 4.

5. DESIGN DISCUSSION
Having presented the goals of the project, the design prin-

ciples underpinning initial ScratchJr prototypes, and key
findings from observations of nearly 180 children using Scratch
and ScratchJr, this section presents a more detailed discus-
sion of the current design features of the ScratchJr soft-
ware and curriculum and how they address the goals and
challenges of creating ScratchJr as a developmentally ap-
propriate programming environment for children ages 5 to
7. While building on many powerful affordances of the exist-
ing Scratch software, ScratchJr was extensively redesigned
and differentiated to meet the needs and learning goals of
kindergarten to second grade classrooms.

ScratchJr aims for children as young as five to meaning-
fully explore and gain independence in iteratively creating
animated and interactive stories by considering the cogni-
tive, physical, language, and socio-emotional traits of this
age range during the design process. The layout is stream-
lined, with one third fewer programming blocks than in
Scratch, only a few other essential tools, and no complex
menus to navigate. Features are laid out intuitively and to
minimize requisite mouse movement, clicking, and scrolling.
Elements of the interface are large enough to facilitate tar-
geting blocks and buttons with a mouse-pointer on a com-
puter or with a fingertip on a tablet. Common strategies for
building early literacy support children across the kinder-
garten to grade two range in navigating ScratchJr on their
own. Labels are primarily icon-based so early readers can
readily learn the elements of the tool. Any text is either
child-created or can be revealed by the user, in which case
the text is associated with the pertinent icon.

All features guide progress toward a project goal; they
should be more useful than distracting. Across the software,
the design of colors, layout, and functionality draw atten-
tion to programming functions. Manipulations of charac-
ter graphics are implemented as programming blocks rather
than non-programmatic buttons. Additionally, program-
ming blocks must be placed in the scripting area to be func-
tional, but once there, they can be clicked to run or attached
to a trigger block, facilitating both tinkering and program-
ming. Nearly all the instructions have visible outcomes and
a long enough duration for children to observe; a select few

control-flow or meta-level instructions are grouped together
to minimize confusion for children not yet ready to explore
them. This wide range of design choices aims to provide
both physical and cognitive supports to help young children
use ScratchJr with a level of independence that is reasonable
to manage in a classroom setting.

5.1 Low Floor, Appropriate Ceiling
Tremendous variability in cognitive skills and knowledge

exists among children in grades K-2. ScratchJr accommo-
dates this range by providing an appropriately high ceil-
ing, room to grow above a sufficiently unimposing entry
point. There is variety in the complexity of instructions,
from straightforward and concrete to more complex or ab-
stract instructions, giving children appropriate content to
explore as they master the basic tools. Teachers can there-
fore tailor a curriculum to the needs of the class. For ex-
ample, the first structured activity in the current curricu-
lum focuses on programming simple movement for a single
character with start, motion, and end instructions. Later
activities can include additional characters, more advanced
uses of motion instructions, combinations of actions, and
coordination of actions between characters.

While many aspects of ScratchJr can provide such a range
of complexity, some tools and features afford less flexibility,
and kindergartners and second graders may need incompat-
ible designs. In these instances, a middle-ground solution
was chosen as a starting point for testing, aiming to allow
older children room to explore without shutting out younger
children. For instance, children across early kindergarten to
late second grade are comfortable with very different ranges
of numbers. Although there are many possible solutions
to this issue, the decision was made to set fairly low num-
ber parameter boundaries (under 25) in the initial ScratchJr
prototypes. Second graders are ready to explore higher num-
bers, but the benefit to older children would be offset by the
challenge posed to younger children.

5.2 A Tinkerable Space in Between
A tool with an efficaciously low floor and appropriately

high ceiling must also provide a tinkerable space in between.
Tinkerability is the extent to which a user can incrementally
learn unfamiliar aspects of the tool and iteratively build up
a project. If ScratchJr is sufficiently tinkerable, children in
the target age range at different levels of ability or readiness
should all find plenty of rich tools and functions to learn
through exploration and creation. At the same time, they
should not be hindered by designs and features implemented
to address the needs of users at other levels. Many design de-
cisions, particularly regarding what instructions to include,
the behavior each block produces, and how to categorize the
instruction set, were made to strike this balance.

The instruction set largely contains actions that children
can readily grasp conceptually and whose actions are visible
in the characters’ behavior. These traits help children con-
nect familiar knowledge to new and provide crucial feedback
throughout exploration. As mentioned in Section 4.1.2, chil-
dren learn new programming blocks more easily when they
can see the connection between the block in the program and
the ephemeral behavior of a character. To provide such feed-
back all action blocks take time to run and are highlighted
in the scripting area as they do so. The limited number of
instructions with instant or obscured outcomes minimizes

7

Full Papers IDC 2013, New York, NY, USA

points of confusion, supporting tinkering and debugging.
Other examples of designing for tinkerability by ensuring
that embedded concepts are within grasp of the age range
include the bounded range of numerical parameter values,
concrete reference points such as a grid for counting units of
distance, and allowing multiple ways of creating similar out-
comes through combinations of blocks and/or manipulation
of instructions’ parameter values.

5.3 A Broad Welcome
ScratchJr was designed to be inviting and accessible to

young children with a variety of styles of thinking and creat-
ing. The color scheme sets a playful tone while also drawing
focus to programming tools and the created story page. The
graphics are bright and whimsical, and the programmable
actions are meaningful and fun. ScratchJr also supports
multiple modes of engagement with a project. Children
drawn to artistic endeavors can build investment in a project
by designing characters and backgrounds. Children drawn
to creating animations can explore the range of program-
ming concepts systematically or through tinkering, based
on personal styles of thinking, learning, and creating. The
ability to create up to four independent “pages” and to inte-
grate text and speech into a project allows children to create
their own storybooks. For ease, children can use embedded
graphics, or, to adapt and connect projects to their own lives
and ideas, children can use simple scalable vector graphics
editing tools to re-color existing graphics or design new ones.
ScratchJr allows children’s work to stem from a compelling
mode of creation, whether artistic, programmatic, or narra-
tive, and to proceed in ways that suit children’s individual
styles of creating and learning.

5.4 Supports for Classrooms
Designing ScratchJr for classroom use entails different con-

straints and considerations than informal after-school or at-
home use cases, such as specific learning goals and a high ra-
tio of young children to adults. ScratchJr has been designed
to be feasible for both children and teachers to use in the
classroom and to support three major categories of learning
beyond programming itself: foundational knowledge struc-
tures, discipline-specific knowledge, and problem-solving.

5.4.1 Feasibility
The software was designed to be feasible for teachers to

manage and usable for early elementary school children with
minimal adult intervention. In contrast with other design
principles, this goal was mainly met be ensuring that the
net result of interface and interaction design decisions facil-
itated independent use by a large group of children. This
was assessed in classroom studies by noting the frequency
and purpose of children’s reliance on adult support. These
observations spurred several changes to the interface layout
and interactions for using particular tools to maximize chil-
dren’s ability to discover new functions on their own. For
example, an overly complex pathway for deleting a charac-
ter was simplified after many children frequently asked for
help to remember it. The use of ScratchJr Cards also was
aimed at helping children independently work through each
activity. Broadly, simple, intuitive designs and the over-
all tinkerability of ScratchJr allows for independent use and
supports classroom feasibility.

5.4.2 Supports Foundational Knowledge
Foundational knowledge structures are those which ap-

ply across domains, skills such as sequencing, estimation,
prediction, composition, and decomposition. Programming
in ScratchJr can help children build these skills in several
ways. Children explore the effects of sequencing as they
compose each script from individual programming instruc-
tions matched to story or action components. As children
use programming blocks’ parameters, they develop skills in
estimating, “How many?” or “How far?” Children are en-
couraged to predict what will happen when they run each
refined iteration of their program, to think about whether
the changes they have made will result in their intended out-
come. The software then provides immediate feedback about
the accuracy of their estimations and predictions. Making
these situations explicit through curricular activities and en-
couraging frequent practice of them can help children de-
velop these interdisciplinary and foundational skills.

5.4.3 Supports Discipline-Specific Learning
In addition to supporting domain-general skills, an im-

portant aspect of ScratchJr is to integrate opportunities for
children to learn and practice concepts from state and na-
tional early literacy and math frameworks. ScratchJr fa-
cilitates learning discipline-specific knowledge in two ways.
Core math and literacy concepts from national and state
curriculum frameworks for grades K-2 are embedded and
practiced through the basic use of the software. Teachers can
also design ScratchJr activities which integrate and reinforce
concepts from other domains under study by the classroom.

Several aspects of the programming project format rein-
force literacy and book knowledge children are learning in
their classrooms. Components of the software are discussed
using familiar book and video analogies. The programming
scripts are created and run from left to right, the same way
as written English. To support narrative structure ScratchJr
lets children create multi-page projects, like a book with a
beginning, middle, and end. Text showing the name of each
block can be revealed to support word recognition by letting
children match intuitive icons with related text. Any other
text that appears in a project has been created by the child.
Though this paper has tended to highlight the building or
“writing” mode of programming in ScratchJr, children also
“read” and decompose scripts when they rebuild and try the
example program on a ScratchJr Card, look over a peer’s
shoulder, or spend multiple sessions on a project and re-
situate themselves each day.

Other aspects of the design focus on common math con-
cepts for grades K-2, primarily number sense (magnitude)
and measurement. Within these areas, children can pur-
sue several pathways of quantitative exploration. Different
kinds of measurement are included, e.g. distance, rotation,
time, and iterations. Each one aims to have a visible and in-
tuitive unit of measurement to facilitate exploration within
this context. For instance, the removable grid of 20 by 15
squares mentioned earlier has been added to the page to give
children a concrete unit to count and estimate as they de-
termine how far to move a character. The designs of less
straight-forward measurement units which do not have a
structure similar to the grid to convey their meaning are
still in progress, with simple solutions implemented to gather
initial responses and assess children’s understandings of the
measurement concepts.

8

Full Papers IDC 2013, New York, NY, USA

In using the grid, several possible strategies for program-
ming movement of a given distance facilitates exploration
of increasingly sophisticated number and programming con-
cepts. To move a character three grid squares, a child could
sequence three “Move 1” blocks, using the default parameter
value for this block. The child could also use a single “Move
1” block and click the script or the Play button three times.
Finally, the child could change the number parameter, cre-
ating a “Move 3” block. The grid’s cells and numbered axes
allow for strategies varying in complexity, from estimating
and adjusting to counting to subtraction, for setting number
parameters. The ScratchJr page is 20 units long, so chil-
dren are encouraged to explore numerals whose magnitude
is likely meaningful. In these ways, ScratchJr affords multi-
ple pathways for exploring numbers and measurement in the
context of a compelling task or project. Further work will
investigate whether design variations, such as non-numeric
labels on the grid axes, can better ensure that the tools pro-
vided for more sophisticated strategies like subtraction do
not hinder or confuse children using simpler strategies like
estimation.

Another priority of the project has been to make ScratchJr
easily adaptable to individual teacher’s and children’s ideas,
so several points for teachers to add their own content and
project designs were incorporated. ScratchJr comes with
a basic set of characters and setting graphics compared to
the hundreds available in Scratch. This decision prevents
the difficulty children have in navigating vast arrays of op-
tions, and also encourages children and teachers to create
new graphics that might relate better to classroom-specific
themes. Children can edit the included images or draw their
own in an embedded scalable vector graphics editor. In one
version tested, teachers can also import additional images
and create lesson templates and project starters based on
their curriculum goals at a given time. By providing flexi-
bility to use the embedded assets and blank project layout or
to add assets and provide a different starting point, teachers
and children each have tools to make activities and projects
relevant to classroom-based and personally meaningful con-
tent and learning goals.

5.4.4 Supports Problem-Solving
Also built into the software and the accompanying curricu-

lum are supports for problem-solving: a) identification of a
goal; b) formulation of a plan; c) development of an initial
attempt to meet the goal; d) testing, evaluating, and shar-
ing outcomes; e) debugging and revising each attempt based
on feedback. Many of the design features described vis-à-vis
a low floor and tinkerability also support problem-solving.
They do so by reducing unnecessary low-level cognitive bur-
dens, freeing up mental resources for high-level processes
such as decomposing a story arc or troubleshooting a script
that produces unexpected outcomes. Given fewer program-
ming instructions than in Scratch, icon labels rather than
text, and an emphasis on concrete instructions with visi-
ble, animated results, the challenge of learning to distin-
guish programming blocks and understand their functions is
brought to the level of a five to seven year old without com-
promising the interesting and meaningful nature of possible
programmed outcomes and projects. ScratchJr instructions
were also selected to provide natural units of action to sup-
port decomposition of a story into programmed parts. A
six-year-old child can more readily create a story about a

frog in its habitat with instructions such as “hop” than if
s/he needed to create each hop from lower-level instructions.
These design decisions keep the challenge at an appropriate
level and may help children devote sufficient cognitive re-
sources to the many high-level thinking processes involved
in imagining and creating a program. The ScratchJr Cards,
a core element of the ScratchJr curriculum, also aim to sup-
port problem-solving by helping children map out the nec-
essary components of a solution.

5.4.5 Complementary Curriculum
Created in collaboration with teachers, the ScratchJr cur-

riculum targets a range of basic to advanced concepts. This
curriculum provides teachers with a lesson format they can
immediately implement and adapt as they are ready to cre-
ate their own activities. The core introductory activities in
the curriculum focus on different sets of concepts but follow
a similar structure. First, the researcher or teacher leads
warm-up activities including “Simon Says” variations, intro-
duces and demonstrations the lesson topic, and leads the
class in solving the challenge together. Then children com-
plete the challenge using ScratchJr Cards (modeled after
Scratch cards) as a guide. The activity provides a start-
ing point for children to explore a particular programming
concept or feature, and they may expand upon the lesson
with their own ideas. The goals of the ScratchJr Cards and
other curricular models being tested are to support children
in tracking their own progress through the activity and to
model ways of structuring complex problems. Some activ-
ities of the curriculum also encourage an open-ended ap-
proach to learning and creating. During their first exposure
to ScratchJr, children freely explore the interface to see what
it - and they - can do. After about five structured lessons,
children apply their new skills over two to three sessions to
a project that links to other classroom curriculum (e.g., an
author study). By building on the software and curriculum
designs, teachers have substantial influence on how to use
and adapt ScratchJr as a tool.

6. NEXT STEPS
During Phase 1 and the first half of Phase 2 of the ScratchJr

research project, the authors have collected baseline data,
identified design principles, created a series of software pro-
totypes, and conducted studies with nearly 180 children in
informal and classroom contexts. Next, the classrooms will
explore advanced activities and a new curriculum structure.
Detailed analysis of the extensive data collected so far will
shed further light on children’s learning trajectories with
ScratchJr programming and on the role of software and cur-
riculum features in supporting learning.

During Phase 3, ten new classrooms will use ScratchJr.
Goals of this phase include evaluation of the tools in a broader
sample of classrooms and documentation of how teachers
customize and implement ScratchJr curricula and manage
the software’s use in their classrooms. This phase will also
explore tablet-based ScratchJr use, opening up new design
criteria as well as insights into a more direct interface might
impact children’s learning. Final revisions to the prototype
will be made following analysis of the data and feedback
collected.

One area for future consideration relates to supports for
teachers and classroom use of ScratchJr. Possible tools in-
clude those for monitoring student progress, managing graph-

9

Full Papers IDC 2013, New York, NY, USA

ical and audio assets, and providing project starters to stu-
dents. One support to be implemented during Phase 3 is
an online ScratchJr forum with resources for educators and
means to build connections among ScratchJr classrooms and
teachers. Following broad classroom testing and revision of
the software, curricula, and online resources during Phase 3,
all three components of ScratchJr will be publicly released.

7. CONCLUSION
This paper has presented ScratchJr graphical program-

ming environment, including the features and interactions
designed for young children to create interactive and ani-
mated scenes and stories. Through the design of this soft-
ware and accompanying curriculum materials, children in-
volved in the project have engaged in age-appropriate com-
puter programming and problem-solving while also building
on traditional early childhood experiences: storytelling, nu-
merical and spatial reasoning, creative thinking, and self-
expression. The public deployment of the ScratchJr soft-
ware, curriculum, and online community will provide young
children with a powerful new educational tool as well as
guidance for teachers and parents to implement it to the
benefit of diverse areas of early learning, from math and
literacy to interdisciplinary foundational knowledge struc-
tures.

Children in early elementary school classrooms will con-
tinue to create stories, art, and games with many different
creative mediums. With a tool like ScratchJr at their fin-
gertips, along with crayons and paper, they can engage in
creative storytelling while also building creative problem-
solving and digital literacy, skills seen as keys for participa-
tion and success in an increasingly digital world.

8. ACKNOWLEDGMENTS
This project is supported by National Science Foundation

grant DRL-1118664.

9. REFERENCES
[1] L. Beals and M. Bers. Robotic technologies: When

parents put their learning ahead of their child’s. J Int
Learn Res, 17(4):341–366, 2006.

[2] M. Ben-Ari. Constructivism in computer science
education. In ACM SIGCSE Bulletin, volume 30,
pages 257–261. ACM, 1998.

[3] M. U. Bers. Positive technological development:
Working with computers, children, and the internet.
MassPsych, 51(1):5–7, 2007.

[4] M. U. Bers. Blocks to robots: Learning with technology
in the early childhood classroom. Teachers College,
New York, NY, 2008.

[5] M. U. Bers. Using robotic manipulatives to develop
technological fluency in early childhood. Cont P on
Sci Technol Early Child Educ, pages 105–225, 2008.

[6] E. Cejka, C. Rogers, and M. Portsmore. Kindergarten
robotics: Using robotics to motivate math, science,
and engineering literacy in elementary school. Int J
Eng Educ, 22(4):711–722, 2006.

[7] D. H. Clements. The future of educational computing
research: The case of computer programming. Inf
Technol in Child Educ Ann, 1999(1):147–179, 1999.

[8] D. H. Clements and J. Sarama. Strip mining for gold:
Research and policy in educational technology – a
response to “fool’s gold”. Assoc Adv Comput Educ J,
11(1):7–69, 2003.

[9] C. Copple and S. Bredekamp. Developmentally
appropriate practice in early childhood programs
serving children from birth through age 8. NAEYC,
Washington, DC, 2009.

[10] C. Cordes and E. Miller. Fool’s gold: A critical look at
computers in childhood. 2000.

[11] D. H. Feldman. Piaget’s stages: The unfinished
symphony of cognitive development. New Ideas
Psychol, 22(3):175–231, 2004.

[12] H. Gardner, M. L. Kornhaber, and W. K. Wake.
Intelligence: Multiple perspectives. Harcourt Brace
College, Fort Worth, TX, 1996.

[13] J. P. Hourcade, B. B. Bederson, A. Druin, and
F. Guimbretière. Differences in pointing task
performance between preschool children and adults
using mice. ACM T Comput-Hum Int, 11(4):357–386,
2004.

[14] C. Kelleher and R. Pausch. Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Comput Surv, 37(2):83–137, 2005.

[15] C. Lightfoot, M. Cole, and S. R. Cole. The
development of children. Worth, New York, NY, 2008.

[16] K. B. McKeithen, J. S. Reitman, H. H. Rueter, and
S. C. Hirtle. Knowledge organization and skill
differences in computer programmers. Cognitive
Psychol, 13(3):307–325, 1981.

[17] NAEYC and Fred Rogers Center. Technology and
interactive media as tools in early childhood programs
serving children from birth through age 8. 2012.

[18] National Research Council. Mathematics learning in
early childhood: Paths toward excellence and equity.
2009.

[19] D. A. Norman. User centered system design: New
perspectives on human-computer interaction, chapter
Cognitive engineering, pages 31–61. Lawrence
Erlbaum, Hillsdale, NJ, 1986.

[20] C. Rader, C. Brand, and C. Lewis. Degrees of
comprehension: Children’s understanding of a visual
programming environment. In Proc ACM SIGCHI
Human Factors in Computing Systems, pages 351–358.
ACM, 1997.

[21] M. Resnick. Sowing the seeds for a more creative
society. Learning and Leading with Technology,
35(4):18–22, 2007.

[22] C. Rogers and M. Portsmore. Bringing engineering to
elementary school. J STEM Educ, 5(3-4):17–28, 2004.

10

Full Papers IDC 2013, New York, NY, USA

